cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A366762 Numbers whose canonical prime factorization contains only exponents which are congruent to 1 modulo 3.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

First differs from A274034 at n = 42, and from A197680 and A361177 at n = 84.
The asymptotic density of this sequence is zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A002117 * A330523 = A253905 * A065465 = 0.644177671086029533405... .

Crossrefs

Similar sequences with exponents of a given form: A000290 (2*k), A268335 (2*k+1), A000578 (3*k), A182120 (3*k+2).

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 1 &]; Select[Range[120], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n)^s = zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)), for s > 1.

A254732 a(n) is the least k > n such that n divides k^2.

Original entry on oeis.org

2, 4, 6, 6, 10, 12, 14, 12, 12, 20, 22, 18, 26, 28, 30, 20, 34, 24, 38, 30, 42, 44, 46, 36, 30, 52, 36, 42, 58, 60, 62, 40, 66, 68, 70, 42, 74, 76, 78, 60, 82, 84, 86, 66, 60, 92, 94, 60, 56, 60, 102, 78, 106, 72, 110, 84, 114, 116, 118, 90, 122, 124, 84, 72
Offset: 1

Views

Author

Peter Kagey, Feb 06 2015

Keywords

Comments

A073353(n) <= a(n) <= 2*n. Any prime that divides n must also divide a(n), and because n divides (2*n)^2.
Are all terms even? -Harvey P. Dale, Aug 07 2025

Examples

			a(12) = 18 because 12 divides 18^2, but 12 does not divide 13^2, 14^2, 15^2, 16^2, or 17^2.
		

Crossrefs

Cf. A254733 (similar, with k^3), A254734 (similar, with k^4), A073353 (similar, with limit m->infinity of k^m).
Cf. A253905.

Programs

  • Haskell
    a254732 n = head [k | k <- [n + 1 ..], mod (k ^ 2) n == 0]
    -- Reinhard Zumkeller, Feb 07 2015
    
  • Mathematica
    lk[n_]:=Module[{k=n+1},While[!Divisible[k^2,n],k++];k]; Array[lk,70] (* Harvey P. Dale, Nov 05 2017 *)
    Table[Module[{k=n+1},While[PowerMod[k,2,n]!=0,k++];k],{n,70}] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    a(n)=for(k=n+1,2*n,if(k^2%n==0,return(k)))
    vector(100,n,a(n)) \\ Derek Orr, Feb 06 2015
    
  • PARI
    a(n)=my(t=factorback(factor(n)[,1])); forstep(k=n+t,2*n,t,if(k^2%n==0, return(k))) \\ Charles R Greathouse IV, Feb 07 2015
    
  • Python
    def A254732(n):
        k = n + 1
        while pow(k,2,n):
            k += 1
        return k # Chai Wah Wu, Feb 15 2015
  • Ruby
    def a(n)
      (n+1..2*n).find { |k| k**2 % n == 0 }
    end
    

Formula

a(n) = sqrt(n*A072905(n)).
a(n) = A019554(n)*(A000188(n)+1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + zeta(3)/zeta(2) = 1 + A253905 = 1.73076296940143849872... . - Amiram Eldar, Feb 17 2024

A038388 Let f(n) be the smallest number such that the arithmetic mean (A) and geometric mean (G) of n and f(n) are both integers; sequence gives G values.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 3, 10, 11, 12, 13, 14, 15, 8, 17, 6, 19, 20, 21, 22, 23, 12, 5, 26, 9, 28, 29, 30, 31, 8, 33, 34, 35, 12, 37, 38, 39, 20, 41, 42, 43, 44, 15, 46, 47, 24, 7, 10, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 21, 16, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 15
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Nand @@ IntegerQ /@ {(n + k)/2, g = Sqrt[n*k]}, k++]; g, {n, 75}] (* Jayanta Basu, Jul 14 2013 *)
    f[p_, e_] := If[OddQ[e], p^((e + 1)/2), If[p == 2, 2^(e/2 + 1), p^(e/2)]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^((f[i,2]+1)/2), if(f[i,1]==2, 2^(f[i,2]/2+1), f[i,1]^(f[i,2]/2))));} \\ Amiram Eldar, Oct 27 2022

Formula

Multiplicative with a(p^e) = p^((e+1)/2) if e is odd, 2^(e/2+1) if p=2 and e is even, p^(e/2) if p>2 and e is even. - Vladeta Jovovic, May 15 2003
Sum_{k=1..n} a(k) ~ c * n^2, where c = (13/24)*zeta(3)/zeta(2) = 0.395829... . - Amiram Eldar, Oct 27 2022

Extensions

More terms from Vladeta Jovovic, May 15 2003

A367407 a(n) = sqrt(A367406(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 4, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 12, 26, 9, 29, 30, 31, 8, 33, 34, 35, 37, 38, 39, 20, 41, 42, 43, 46, 47, 51, 53, 18, 55, 28, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 44, 89, 91, 93, 94, 95, 24, 97
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Mathematica
    s[n_] := Sqrt[n * Times @@ FactorInteger[n][[;;, 1]]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", ")));}

Formula

a(n) = sqrt(A064549(A268335(n))).
a(n) = sqrt(A268335(n)*A367417(n)).
a(n) = A268335(n)/A367419(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = (zeta(3)/(zeta(2)*d^2)) * Product_{p prime} (1 - 1/(p^2*(p+1))) = A253905 * A065465 / d^3 = 1.29812028442810841122..., and d = A065463 is the asymptotic density of the exponentially odd numbers (A268335).

A335005 Decimal expansion of Pi^2/(12*zeta(3)).

Original entry on oeis.org

6, 8, 4, 2, 1, 6, 3, 8, 8, 8, 1, 0, 1, 0, 2, 9, 3, 7, 8, 6, 8, 3, 8, 2, 9, 2, 6, 9, 9, 2, 3, 9, 5, 9, 7, 0, 5, 6, 5, 4, 0, 6, 9, 5, 7, 3, 2, 6, 2, 0, 6, 9, 6, 1, 0, 3, 8, 6, 7, 6, 5, 9, 6, 3, 8, 4, 1, 7, 2, 4, 8, 9, 8, 9, 3, 8, 0, 0, 9, 7, 1, 1, 4, 1, 1, 0, 1
Offset: 0

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			0.68421638881010293786838292699239597056540695732620...
		

Crossrefs

Cf. A002117(zeta(3)), A013661 (zeta(2)), A034448, A064609, A072691 (Pi^2/12), A253905 (zeta(3)/zeta(2)).

Programs

  • Mathematica
    RealDigits[Pi^2/12/Zeta[3], 10, 100][[1]]
  • PARI
    Pi^2/(12*zeta(3)) \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} A064609(k)/k^2, where A064609(k) is the partial sums of A034448, the sum of unitary divisors from 1 to k.
Equals zeta(2)/(2*zeta(3)) = A013661/(2*A002117) = A072691/A002117 = 1/(2*A253905).

A060367 Average order of an element in a cyclic group of order n rounded down.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 6, 5, 6, 6, 10, 6, 12, 9, 9, 10, 16, 10, 18, 11, 14, 15, 22, 12, 20, 18, 20, 16, 28, 14, 30, 21, 23, 24, 25, 18, 36, 27, 28, 22, 40, 21, 42, 27, 28, 33, 46, 24, 42, 31, 37, 33, 52, 30, 42, 33, 42, 42, 58, 26, 60, 45, 41, 42, 50, 35, 66, 44, 51
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001

Keywords

Crossrefs

Programs

  • Maple
    seq(floor(numtheory:-sigma[2](n^2)/numtheory:-sigma(n^2)/n), n=1..1000); # Robert Israel, Mar 24 2015
  • Mathematica
    f[n_] := Block[{i, j, k}, Reap@ For[j = 1, j <= n, j++, Sow[Floor[Sum[1/GCD[j, k], {k, 1, j}]]]]] // Flatten // Rest; f@ 49 (* Michael De Vlieger, Mar 24 2015 *)
    a[n_] := Floor[DivisorSigma[2, n^2]/DivisorSigma[1, n^2]/n]; Array[a, 100] (* Amiram Eldar, Jul 25 2025 *)
  • PARI
    a(n) = {my(f = factor(n^2)); floor(sigma(f, 2)/(n * sigma(f)));} \\ Amiram Eldar, Jul 25 2025
  • Sage
    [floor(sum([1/gcd(n,k) for k in range(1,n+1)])) for n in range(1,50)] # Danny Rorabaugh, Mar 24 2015
    

Formula

Sequence A057660 gives the sum of the orders of the elements in a cyclic group with n elements so a(n) = floor(A057660(n) / n) = floor(Sum_{k=1..n} 1/GCD(n, k)) = floor(Sum of 1/d times phi(n/d)) for all divisors d of n, where phi is Euler's phi function. This sum may also be expressed as the product of (p^(2*e(p)+1)+1)/((p+1)*p^e(p)) over all prime divisors p of n where the canonical factorization of n is the product of p^e(p), the e(p) being the exponents of the power of p in the factorization.
From Amiram Eldar, Jul 25 2025: (Start)
a(n) = floor(sigma_2(n^2)/(n*sigma(n))) = floor(A001157(n^2)/(n*A000203(n^2))) = floor(A065827(n)/(n*A065764(n))).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)/zeta(2) (A253905). (End)

Extensions

Offset corrected and terms a(18)-a(50) added by Danny Rorabaugh, Mar 24 2015

A084302 Remainder of tau(n) modulo 6.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 0, 2, 4, 4, 5, 2, 0, 2, 0, 4, 4, 2, 2, 3, 4, 4, 0, 2, 2, 2, 0, 4, 4, 4, 3, 2, 4, 4, 2, 2, 2, 2, 0, 0, 4, 2, 4, 3, 0, 4, 0, 2, 2, 4, 2, 4, 4, 2, 0, 2, 4, 0, 1, 4, 2, 2, 0, 4, 2, 2, 0, 2, 4, 0, 0, 4, 2, 2, 4, 5, 4, 2, 0, 4, 4, 4, 2, 2, 0, 4, 0, 4, 4, 4, 0, 2, 0, 0, 3, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 27, 236, 2275, 22166, 220070, 2195376, 21933228, 219259514, 2192385128, 21923168052, ... . Conjecture: the asymptotic mean of this sequence is 3*zeta(3)/zeta(2) = 3 * A253905 = 2.192288... . The conjecture is true if A211337 and A211338 have an equal asymptotic density (see also A059269). - Amiram Eldar, Jul 11 2024

Crossrefs

Programs

Formula

a(n) = A000005(n) modulo 6.
Previous Showing 11-17 of 17 results.