cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A276010 a(0) = 0, for n >= 1, a(n) = A275736(n) OR a(A257684(n)), where OR is given by A003986.

Original entry on oeis.org

0, 1, 2, 3, 1, 1, 4, 5, 6, 7, 5, 5, 2, 3, 2, 3, 3, 3, 1, 1, 3, 3, 1, 1, 8, 9, 10, 11, 9, 9, 12, 13, 14, 15, 13, 13, 10, 11, 10, 11, 11, 11, 9, 9, 11, 11, 9, 9, 4, 5, 6, 7, 5, 5, 4, 5, 6, 7, 5, 5, 6, 7, 6, 7, 7, 7, 5, 5, 7, 7, 5, 5, 2, 3, 2, 3, 3, 3, 6, 7, 6, 7, 7, 7, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 3
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2016

Keywords

Crossrefs

Formula

a(0) = 0, for n >= 1, a(n) = A275736(n) OR a(A257684(n)), where OR is given by A003986.
a(n) = A087207(A275734(n)).
Other identities. For all n >= 1:
A000120(a(n)) = A060502(n).

A034968 Minimal number of factorials that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7
Offset: 0

Views

Author

Keywords

Comments

Equivalently, sum of digits when n is written in factorial base (A007623).
Equivalently, a(0)...a(n!-1) give the total number of inversions of the permutations of n elements in lexicographic order (the factorial numbers in rising base are the inversion tables of the permutations and their sum of digits give the total number of inversions, see example and the Fxtbook link). - Joerg Arndt, Jun 17 2011
Also minimum number of adjacent transpositions needed to produce each permutation in the list A055089, or number of swappings needed to bubble sort each such permutation. (See A055091 for the minimum number of any transpositions.)

Examples

			a(205) = a(1!*1 + 3!*2 + 4!*3 + 5!*1) = 1+2+3+1 = 7. [corrected by Shin-Fu Tsai, Mar 23 2021]
From _Joerg Arndt_, Jun 17 2011: (Start)
   n:    permutation   inv. table a(n)  cycles
   0:    [ 0 1 2 3 ]   [ 0 0 0 ]   0    (0) (1) (2) (3)
   1:    [ 0 1 3 2 ]   [ 0 0 1 ]   1    (0) (1) (2, 3)
   2:    [ 0 2 1 3 ]   [ 0 1 0 ]   1    (0) (1, 2) (3)
   3:    [ 0 2 3 1 ]   [ 0 1 1 ]   2    (0) (1, 2, 3)
   4:    [ 0 3 1 2 ]   [ 0 2 0 ]   2    (0) (1, 3, 2)
   5:    [ 0 3 2 1 ]   [ 0 2 1 ]   3    (0) (1, 3) (2)
   6:    [ 1 0 2 3 ]   [ 1 0 0 ]   1    (0, 1) (2) (3)
   7:    [ 1 0 3 2 ]   [ 1 0 1 ]   2    (0, 1) (2, 3)
   8:    [ 1 2 0 3 ]   [ 1 1 0 ]   2    (0, 1, 2) (3)
   9:    [ 1 2 3 0 ]   [ 1 1 1 ]   3    (0, 1, 2, 3)
  10:    [ 1 3 0 2 ]   [ 1 2 0 ]   3    (0, 1, 3, 2)
  11:    [ 1 3 2 0 ]   [ 1 2 1 ]   4    (0, 1, 3) (2)
  12:    [ 2 0 1 3 ]   [ 2 0 0 ]   2    (0, 2, 1) (3)
  13:    [ 2 0 3 1 ]   [ 2 0 1 ]   3    (0, 2, 3, 1)
  14:    [ 2 1 0 3 ]   [ 2 1 0 ]   3    (0, 2) (1) (3)
  15:    [ 2 1 3 0 ]   [ 2 1 1 ]   4    (0, 2, 3) (1)
  16:    [ 2 3 0 1 ]   [ 2 2 0 ]   4    (0, 2) (1, 3)
  17:    [ 2 3 1 0 ]   [ 2 2 1 ]   5    (0, 2, 1, 3)
  18:    [ 3 0 1 2 ]   [ 3 0 0 ]   3    (0, 3, 2, 1)
  19:    [ 3 0 2 1 ]   [ 3 0 1 ]   4    (0, 3, 1) (2)
  20:    [ 3 1 0 2 ]   [ 3 1 0 ]   4    (0, 3, 2) (1)
  21:    [ 3 1 2 0 ]   [ 3 1 1 ]   5    (0, 3) (1) (2)
  22:    [ 3 2 0 1 ]   [ 3 2 0 ]   5    (0, 3, 1, 2)
  23:    [ 3 2 1 0 ]   [ 3 2 1 ]   6    (0, 3) (1, 2)
(End)
		

Crossrefs

Cf. A368342 (partial sums), A001809 (sums of n! terms).
Cf. A227148 (positions of even terms), A227149 (of odd terms).
Differs from analogous A276150 for the first time at n=24.
Positions of records are A200748.

Programs

  • Maple
    [seq(convert(fac_base(j),`+`),j=0..119)]; # fac_base and PermRevLexUnrank given in A055089. Perm2InversionVector in A064039
    Or alternatively: [seq(convert(Perm2InversionVector(PermRevLexUnrank(j)),`+`),j=0..119)];
    # third Maple program:
    b:= proc(n, i) local q;
          `if`(n=0, 0, b(irem(n, i!, 'q'), i-1)+q)
        end:
    a:= proc(n) local k;
          for k while k!Alois P. Heinz, Nov 15 2012
  • Mathematica
    a[n_] := Module[{s=0, i=2, k=n}, While[k > 0, k = Floor[n/i!]; s = s + (i-1)*k; i++]; n-s]; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Nov 06 2013, after Benoit Cloitre *)
  • PARI
    a(n)=local(k,r);k=2;r=0;while(n>0,r+=n%k;n\=k;k++);r \\ Franklin T. Adams-Watters, May 13 2009
    
  • Python
    def a(n):
        k=2
        r=0
        while n>0:
            r+=n%k
            n=n//k
            k+=1
        return r
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 19 2017, after PARI program
    
  • Python
    def A034968(n, p=2): return n if n
  • Scheme
    (define (A034968 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (remainder n i)))))))
    ;; Antti Karttunen, Aug 29 2016
    

Formula

a(n) = n - Sum_{i>=2} (i-1)*floor(n/i!). - Benoit Cloitre, Aug 26 2003
G.f.: 1/(1-x)*Sum_{k>0} (Sum_{i=1..k} i*x^(i*k!))/(Sum_{i=0..k} x^(i*k!)). - Franklin T. Adams-Watters, May 13 2009
From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A099563(n) + a(A257687(n)).
a(0) = 0; for n >= 1, a(n) = A060130(n) + a(A257684(n)).
Other identities. For all n >= 0:
a(n) = A001222(A276076(n)).
a(n) = A276146(A225901(n)).
a(A000142(n)) = 1, a(A007489(n)) = n, a(A033312(n+1)) = A000217(n).
a(A056019(n)) = a(n).
A219651(n) = n - a(n).
(End)

Extensions

Additional comments from Antti Karttunen, Aug 23 2001

A225901 Write n in factorial base, then replace each nonzero digit d of radix k with k-d.

Original entry on oeis.org

0, 1, 4, 5, 2, 3, 18, 19, 22, 23, 20, 21, 12, 13, 16, 17, 14, 15, 6, 7, 10, 11, 8, 9, 96, 97, 100, 101, 98, 99, 114, 115, 118, 119, 116, 117, 108, 109, 112, 113, 110, 111, 102, 103, 106, 107, 104, 105, 72, 73, 76, 77, 74, 75, 90, 91, 94, 95, 92, 93, 84, 85, 88, 89, 86, 87, 78, 79, 82, 83, 80, 81, 48, 49, 52, 53, 50, 51, 66, 67, 70, 71, 68
Offset: 0

Views

Author

Paul Tek, May 20 2013

Keywords

Comments

Analogous to A004488 or A048647 for the factorial base.
A self-inverse permutation of the natural numbers.
From Antti Karttunen, Aug 16-29 2016: (Start)
Consider the following way to view a factorial base representation of nonnegative integer n. For each nonzero digit d_i present in the factorial base representation of n (where i is the radix = 2.. = one more than 1-based position from the right), we place a pebble to the level (height) d_i at the corresponding column i of the triangular diagram like below, while for any zeros the corresponding columns are left empty:
.
Level
6 o
─ ─
5 . .
─ ─ ─
4 . . .
─ ─ ─ ─
3 . . . .
─ ─ ─ ─ ─
2 . . o . .
─ ─ ─ ─ ─ ─
1 . o . . o o
─ ─ ─ ─ ─ ─ ─
Radix: 7 6 5 4 3 2
Digits: 6 1 2 0 1 1 = A007623(4491)
Instead of levels, we can observe on which "slope" each pebble (nonzero digit) is located at. Formally, the slope of nonzero digit d_i with radix i is (i - d_i). Thus in above example, both the most significant digit (6) and the least significant 1 are on slope 1 (called "maximal slope", because it contains digits that are maximal allowed in those positions), while the second 1 from the right is on slope 2 ("submaximal slope").
This involution (A225901) sends each nonzero digit at level k to the slope k (and vice versa) by flipping such a diagram by the shallow diagonal axis that originates from the bottom right corner. Thus, from above diagram we obtain:
Slope (= digit's radix - digit's value)
1
2 .
3 . .╲
4 . .╲o╲
5 . .╲.╲.╲
6 . .╲.╲o╲.╲
. .╲.╲.╲.╲o╲
o╲.╲.╲.╲.╲o╲
-----------------
1 5 3 0 2 1 = A007623(1397)
and indeed, a(4491) = 1397 and a(1397) = 4491.
Thus this permutation maps between polynomial encodings A275734 & A275735 and all the respective sequences obtained from them, where the former set of sequences are concerned with the "slopes" and the latter set with the "levels" of the factorial base representation. See the Crossrefs section.
Sequences A231716 and A275956 are closed with respect to this sequence, in other words, for all n, a(A231716(n)) is a term of A231716 and a(A275956(n)) is a term of A275956.
(End)

Examples

			a(1000) = a(1*6! + 2*5! + 1*4! + 2*3! + 2*2!) = (7-1)*6! + (6-2)*5! + (5-1)*4! + (4-2)*3! + (3-2)*2! = 4910.
a(1397) = a(1*6! + 5*5! + 3*4! + 0*3! + 2*2! + 1*1!) = (7-1)*6! + (6-5)*5! + (5-3)*4! + (3-2)*2! + (2-1)*1! = 4491.
		

Crossrefs

Cf. A275959 (fixed points), A231716, A275956.
This involution maps between the following sequences related to "levels" and "slopes" (see comments): A275806 <--> A060502, A257511 <--> A260736, A264990 <--> A275811, A275729 <--> A275728, A275948 <--> A275946, A275949 <--> A275947, A275964 <--> A275962, A059590 <--> A276091.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Range[2, 12]]; Table[FromDigits[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #), b] &@ IntegerDigits[n, b], {n, 0, 82}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; g[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Range@ Range[0, Length@ w]], Reverse@ Append[w, 0]}]; Table[g[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #)] &@ f@ n, {n, 0, 82}] (* Michael De Vlieger, Aug 29 2016 *)
  • PARI
    a(n)=my(s=0,d,k=2);while(n,d=n%k;n=n\k;if(d,s=s+(k-d)*(k-1)!);k=k+1);return(s)
    
  • Python
    from sympy import factorial as f
    def a(n):
        s=0
        k=2
        while(n):
            d=n%k
            n=(n//k)
            if d: s=s+(k - d)*f(k - 1)
            k+=1
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
  • Scheme
    (define (A225901 n) (let loop ((n n) (z 0) (m 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n m) (if (zero? (modulo n m)) z (+ z (* f (- m (modulo n m))))) (+ 1 m) (* f m))))))
    ;; One implementing the first recurrence, with memoization-macro definec:
    (definec (A225901 n) (if (zero? n) n (+ (A276091 (A275736 n)) (A153880 (A225901 (A257684 n))))))
    ;; Antti Karttunen, Aug 29 2016
    

Formula

From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A276091(A275736(n)) + A153880(a(A257684(n))).
or, for n >= 1, a(n) = A276149(n) + a(A257687(n)).
(End)
Other identities. For n >= 0:
a(n!) = A001563(n).
a(n!-1) = A007489(n-1).
From Antti Karttunen, Aug 16 2016: (Start)
A275734(a(n)) = A275735(n) and vice versa, A275735(a(n)) = A275734(n).
A060130(a(n)) = A060130(n). [The flip preserves the number of nonzero digits.]
A153880(n) = a(A255411(a(n))) and A255411(n) = a(A153880(a(n))). [This involution conjugates between the two fundamental factorial base shifts.]
a(n) = A257684(a(A153880(n))) = A266193(a(A255411(n))). [Follows from above.]
A276011(n) = A273662(a(A273670(n))).
A276012(n) = A273663(a(A256450(n))).
(End)

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A060130 Number of nonzero digits in factorial base representation (A007623) of n; minimum number of transpositions needed to compose each permutation in the lists A060117 & A060118.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2001

Keywords

Examples

			19 = 3*(3!) + 0*(2!) + 1*(1!), thus it is written as "301" in factorial base (A007623). The count of nonzero digits in that representation is 2, so a(19) = 2.
		

Crossrefs

Cf. A227130 (positions of even terms), A227132 (of odd terms).
The topmost row and the leftmost column in array A230415, the left edge of triangle A230417.
Differs from similar A267263 for the first time at n=30.

Programs

  • Maple
    A060130(n) = count_nonfixed(convert(PermUnrank3R(n), 'disjcyc'))-nops(convert(PermUnrank3R(n), 'disjcyc')) or nops(fac_base(n))-nops(positions(0, fac_base(n)))
    fac_base := n -> fac_base_aux(n, 2); fac_base_aux := proc(n, i) if(0 = n) then RETURN([]); else RETURN([op(fac_base_aux(floor(n/i), i+1)), (n mod i)]); fi; end;
    count_nonfixed := l -> convert(map(nops, l), `+`);
    positions := proc(e, ll) local a, k, l, m; l := ll; m := 1; a := []; while(member(e, l[m..nops(l)], 'k')) do a := [op(a), (k+m-1)]; m := k+m; od; RETURN(a); end;
    # For procedure PermUnrank3R see A060117
  • Mathematica
    Block[{nn = 105, r}, r = MixedRadix[Reverse@ Range[2, -1 + SelectFirst[Range@ 12, #! > nn &]]]; Array[Count[IntegerDigits[#, r], k_ /; k > 0] &, nn, 0]] (* Michael De Vlieger, Dec 30 2017 *)
  • Scheme
    (define (A060130 n) (let loop ((n n) (i 2) (s 0)) (cond ((zero? n) s) (else (loop (quotient n i) (+ 1 i) (+ s (if (zero? (remainder n i)) 0 1)))))))
    ;; Two other implementations, that use memoization-macro definec:
    (definec (A060130 n) (if (zero? n) n (+ 1 (A060130 (A257687 n)))))
    (definec (A060130 n) (if (zero? n) n (+ (A257511 n) (A060130 (A257684 n)))))
    ;; Antti Karttunen, Dec 30 2017

Formula

a(0) = 0; for n > 0, a(n) = 1 + a(A257687(n)).
a(0) = 0; for n > 0, a(n) = A257511(n) + a(A257684(n)).
a(n) = A060129(n) - A060128(n).
a(n) = A084558(n) - A257510(n).
a(n) = A275946(n) + A275962(n).
a(n) = A275948(n) + A275964(n).
a(n) = A055091(A060119(n)).
a(n) = A069010(A277012(n)) = A000120(A275727(n)).
a(n) = A001221(A275733(n)) = A001222(A275733(n)).
a(n) = A001222(A275734(n)) = A001222(A275735(n)) = A001221(A276076(n)).
a(n) = A046660(A275725(n)).
a(A225901(n)) = a(n).
A257511(n) <= a(n) <= A034968(n).
A275806(n) <= a(n).
a(A275804(n)) = A060502(A275804(n)). [A275804 gives all the positions where this coincides with A060502.]
a(A276091(n)) = A260736(A276091(n)). [A276091 gives all the positions where this coincides with A260736.]

Extensions

Example-section added, name edited, the old Maple-code moved away from the formula-section, and replaced with all the new formulas by Antti Karttunen, Dec 30 2017

A273670 Numbers with at least one maximal digit in their factorial base representation.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 0

Views

Author

Antti Karttunen, May 29 2016

Keywords

Comments

Indexing starts from 0 (with a(0) = 1) to tally with the indexing used in A256450.
Numbers n for which is A260736(n) > 0.
Involution A225901 maps each term of this sequence to a unique term of A256450, and vice versa.

Crossrefs

Cf. A153880 (complement).
Cf. A273663 (a left inverse).
Cf. A260736.
Cf. also A225901, A256450.

Programs

  • Mathematica
    r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 105, Total@ Boole@ Map[SameQ @@ # &, Transpose@{#, Range@ Length@ #}] > 0 &@ Reverse@ IntegerDigits[#, r] &] (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x])[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a260736(n): return 0 if n==0 else n%2 + a260736(a257684(n)) print([n for n in range(106) if a260736(n)>0]) # Indranil Ghosh, Jun 20 2017

Formula

a(0) = 1, and for n > 1, if A260736(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]
Other identities. For all n >= 0:
A273663(a(n)) = n.

A099563 a(0) = 0; for n > 0, a(n) = final nonzero number in the sequence n, f(n,2), f(f(n,2),3), f(f(f(n,2),3),4),..., where f(n,d) = floor(n/d); the most significant digit in the factorial base representation of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

John W. Layman, Oct 22 2004

Keywords

Comments

Records in {a(n)} occur at {1,4,18,96,600,4320,35280,322560,3265920,...}, which appears to be n*n! = A001563(n).
The most significant digit in the factorial expansion of n (A007623). Proof: The algorithm that computes the factorial expansion of n, generates the successive digits by repeatedly dividing the previous quotient with successively larger divisors (the remainders give the digits), starting from n itself and divisor 2. As a corollary we find that A001563 indeed gives the positions of the records. - Antti Karttunen, Jan 01 2007.

Examples

			For n=15, f(15,2) = floor(15/2)=7, f(7,3)=2, f(2,4)=0, so a(15)=2.
From _Antti Karttunen_, Dec 24 2015: (Start)
Example illustrating the role of this sequence in factorial base representation:
   n  A007623(n)       a(n) [= the most significant digit].
   0 =   0               0
   1 =   1               1
   2 =  10               1
   3 =  11               1
   4 =  20               2
   5 =  21               2
   6 = 100               1
   7 = 101               1
   8 = 110               1
   9 = 111               1
  10 = 120               1
  11 = 121               1
  12 = 200               2
  13 = 201               2
  14 = 210               2
  15 = 211               2
  16 = 220               2
  17 = 221               2
  18 = 300               3
  etc.
Note that there is no any upper bound for the size of digits in this representation.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/#] &@ (k = 1; While[(k + 1)! <= n, k++]; k!), {n, 0, 120}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); }; \\ Antti Karttunen, Dec 24 2015
    
  • Python
    def a(n):
        i=2
        d=0
        while n:
            d=n%i
            n=(n - d)//i
            i+=1
        return d
    print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 21 2017, after PARI code
  • Scheme
    (define (A099563 n) (let loop ((n n) (i 2)) (let* ((dig (modulo n i)) (next-n (/ (- n dig) i))) (if (zero? next-n) dig (loop next-n (+ 1 i))))))
    (definec (A099563 n) (cond ((zero? n) n) ((= 1 (A265333 n)) 1) (else (+ 1 (A099563 (A257684 n)))))) ;; Based on given recurrence, using the memoization-macro definec
    ;; Antti Karttunen, Dec 24-25 2015
    

Formula

From Antti Karttunen, Dec 25 2015: (Start)
a(0) = 0; for n >= 1, if A265333(n) = 1 [when n is one of the terms of A265334], a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities. For all n >= 0:
a(A001563(n)) = n. [Sequence works as a left inverse for A001563.]
a(n) = A257686(n) / A048764(n).
(End)

Extensions

a(0) = 0 prepended and the alternative description added to the name-field by Antti Karttunen, Dec 24 2015

A257687 Discard the most significant digit from factorial base representation of n, then convert back to decimal: a(n) = n - A257686(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0
Offset: 0

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

A060130(n) gives the number of steps needed to reach zero, when starting iterating as a(k), a(a(k)), etc., from the starting value k = n.

Examples

			Factorial base representation (A007623) of 1 is "1", discarding the most significant digit leaves nothing, taken to be zero, thus a(1) = 0.
Factorial base representation of 2 is "10", discarding the most significant digit leaves "0", thus a(2) = 0.
Factorial base representation of 3 is "11", discarding the most significant digit leaves "1", thus a(3) = 1.
Factorial base representation of 4 is "20", discarding the most significant digit leaves "0", thus a(4) = 0.
		

Crossrefs

Can be used (together with A099563) to define simple recurrences for sequences like A034968, A060130, A227153, A246359, A257511, A257679, A257680.
Cf. also A257684.

Programs

  • Mathematica
    f[n_] := Block[{m = p = 1}, While[p*(m + 1) <= n, p = p*m; m++]; Mod[n, p]]; Array[f, 101, 0] (* Robert G. Wilson v, Jul 21 2015 *)
  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n
  • Scheme
    (define (A257687 n) (- n (A257686 n)))
    

Formula

a(n) = n - A257686(n).

A257679 The smallest nonzero digit present in the factorial base representation (A007623) of n, 0 if no nonzero digits present.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 04 2015

Keywords

Comments

a(0) = 0 by convention, because "0" has no nonzero digits present.
a(n) gives the row index of n in array A257503 (equally, the column index for array A257505).

Examples

			Factorial base representation (A007623) of 4 is "20", the smallest digit which is not zero is "2", thus a(4) = 2.
		

Crossrefs

Positions of records: A001563.
Cf. A256450, A257692, A257693 (positions of 1's, 2's and 3's in this sequence).
Cf. also A257079, A246359 and arrays A257503, A257505.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, rmin = n, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[0 < r < rmin, rmin = r]; m++]; rmin]; Array[a, 100, 0] (* Amiram Eldar, Jan 23 2024 *)
  • Python
    def A(n, p=2):
        return n if n
  • Scheme
    (define (A257679 n) (let loop ((n n) (i 2) (mind 0)) (if (zero? n) mind (let ((d (modulo n i))) (loop (/ (- n d) i) (+ 1 i) (cond ((zero? mind) d) ((zero? d) mind) (else (min d mind))))))))
    ;; Alternative implementations based on given recurrences, using memoizing definec-macro:
    (definec (A257679 n) (if (zero? (A257687 n)) (A099563 n) (min (A099563 n) (A257679 (A257687 n)))))
    (definec (A257679 n) (cond ((zero? n) n) ((= 1 (A257680 n)) 1) (else (+ 1 (A257679 (A257684 n))))))
    

Formula

If A257687(n) = 0, then a(n) = A099563(n), otherwise a(n) = min(A099563(n), a(A257687(n))).
In other words, if n is either zero or one of the terms of A051683, then a(n) = A099563(n) [the most significant digit of its f.b.r.], otherwise take the minimum of the most significant digit and a(A257687(n)) [value computed by recursing with a smaller value obtained by discarding that most significant digit].
a(0) = 0, and for n >= 1: if A257680(n) = 1, then a(n) = 1, otherwise 1 + a(A257684(n)).
Other identities:
For all n >= 0, a(A001563(n)) = n. [n * n! gives the first position where n appears. Note also that the "digits" (placeholders) in factorial base representation may get arbitrarily large values.]
For all n >= 0, a(2n+1) = 1 [because all odd numbers end with digit 1 in factorial base].

A266193 Decrement by 1 all maximal digits in factorial base representation of n and then shift it one digit right.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 17, 17, 17, 17, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 23 2015

Keywords

Comments

By "maximal digits" are here understood any digit k that occurs in position k, digit-positions numbered from the right and starting from 1. For example in A007623(677) = "53021", the digits "5" and "1" are maximal, because no larger digits will fit into those positions in a well-formed factorial base representation of a natural number.

Examples

			    n     A007623(n)  [subtract 1 from max.digits      a(n)
        [in factorial  then shift one digit right]   [reinterpret
                 base]                                 in decimal]
    0         0     ->      0                         =  0
    1         1     ->      0                         =  0
    2        10     ->      1                         =  1
    3        11     ->      1                         =  1
    4        20     ->      1                         =  1
    5        21     ->      1                         =  1
    6       100     ->     10                         =  2
    7       101     ->     10                         =  2
    8       110     ->     11                         =  3
    9       111     ->     11                         =  3
   10       120     ->     11                         =  3
   11       121     ->     11                         =  3
   12       200     ->     20                         =  4
   13       201     ->     20                         =  4
   14       210     ->     21                         =  5
   15       211     ->     21                         =  5
   16       220     ->     21                         =  5
   17       221     ->     21                         =  5
   18       300     ->     20                         =  4
  ...
   23       321     ->     21                         =  5
  119      4321     ->    321                         = 23
		

Crossrefs

Left inverse of A153880.

Programs

  • Python
    from sympy import factorial as f
    def a007623(n, p=2): return n if n

Formula

Other identities. For all n >= 0:
a(A153880(n)) = n.
Previous Showing 11-20 of 34 results. Next