A126086 Number of paths from (0,0,0) to (n,n,n) such that at each step (i) at least one coordinate increases, (ii) no coordinate decreases, (iii) no coordinate increases by more than 1 and (iv) all coordinates are integers.
1, 13, 409, 16081, 699121, 32193253, 1538743249, 75494983297, 3776339263873, 191731486403293, 9850349744182729, 510958871182549297, 26716694098174738321, 1406361374518034383189, 74456543501901550262689, 3961518532003397434536961, 211689479080817606497324033
Offset: 0
Keywords
Examples
Illustrating a(1) = 13: 000 -> 001 -> 011 -> 111 000 -> 001 -> 101 -> 111 000 -> 001 -> 111 000 -> 010 -> 011 -> 111 000 -> 010 -> 110 -> 111 000 -> 010 -> 111 000 -> 100 -> 101 -> 111 000 -> 100 -> 110 -> 111 000 -> 100 -> 111 000 -> 011 -> 111 000 -> 101 -> 111 000 -> 110 -> 111 000 -> 111
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 101 terms from Nick Hobson)
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- E. Duchi and R. A. Sulanke, The 2^{n-1} Factor for Multi-Dimensional Lattice Paths with Diagonal Steps, Séminaire Lotharingien de Combinatoire, B51c (2004).
- Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Steffen Eger, The Combinatorics of Weighted Vector Compositions, arXiv:1704.04964 [math.CO], 2017.
- Nick Hobson, Python program
- L. Reid, Problem #8: How Many Paths from A to B?, Missouri State University's Challenge Problem Set from the 2005-2006 academic year.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
Programs
-
Maple
f := proc(n) local i,k; add(add((-1)^k*binomial(k,i)*(-1)^i*binomial(i,n)^3,i=n..k),k=n..3*n) end: # Brendan McKay, Mar 03 2007 seq(sum(binomial(k,n)^3/2^(k+1),k=n..infinity),n=0..10); # Vladeta Jovovic, Mar 01 2008
-
Mathematica
m = 14; se = Series[1/(1 - x - y - z - x*y - x*z - y*z - x*y*z), {x, 0, m}, {y, 0, m}, {z, 0, m}]; a[n_] := Coefficient[se, (x*y*z)^n]; a[0] = 1; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Sep 27 2011, after Max Alekseyev *) Table[Sum[Sum[(-1)^k*Binomial[k,i]*(-1)^i*Binomial[i,n]^3,{i,n,k}],{k,n,3*n}],{n,0,20}] (* Vaclav Kotesovec, Mar 15 2014, after Brendan McKay *)
-
Python
# Naive version - see link for better version. def f(a, b): if a == 0 or b == 0: return 1 return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1) def g(a, b, c): if a == 0: return f(b, c) if b == 0: return f(c, a) if c == 0: return f(a, b) return ( g(a, b, c - 1) + g(a, b - 1, c) + g(a - 1, b, c) + g(a, b - 1, c - 1) + g(a - 1, b, c - 1) + g(a - 1, b - 1, c) + g(a - 1, b - 1, c - 1) ) for n in range(6): print(g(n, n, n), end=", ")
Formula
a(n) can be computed as the coefficient of (xyz)^n in the expansion of 1 / (1-x-y-z-xy-xz-yz-xyz). Also, - 2*(n+1)^2 * a(n) + (n+1)*(5n+8) * a(n+1) - 3*(37*n^2 + 146*n + 139) * a(n+2) - (55*n^2 + 389*n + 685) * a(n+3) + (n+4)^2 * a(n+4) = 0. - Max Alekseyev, Mar 03 2007
For Brendan McKay's explicit formula see the Maple code.
From Dan Dima, Mar 03 2007: (Start)
I found a very simple (although infinite) sum for the number of paths from (0,0,...,0) to (a(1),a(2),...,a(k)) using "nonzero" (2^k-1) steps of the form (x(1),x(2),...,x(k)) where x(i) is in {0,1} for 1<=i<=k, k-dimensions.
f(a(1),a(2),...,a(k)) = Sum( (C(n;a(1)) * C(n;a(2)) * ... C(n;a(k))) / 2^{n+1}, {n, max(a(1),a(2),...,a(k)), infinity}), Sum( (C(n;a(1)) * C(n;a(2)) * ... C(n;a(k))) / 2^{n+1}, {n, 0, infinity}), C(n;a)=n!/a!(n-a)! & we assumed C(n;a)=0 if n
Also f(a(1),a(2),...,a(k)) can be computed as the coefficient of x(1)^a(1)...x(k)^a(k) in the expansion: 1/2 * 1/(1 - (1+x(1))*...*(1+x(k))/2). (End)
From David W. Cantrell (DWCantrell(AT)sigmaxi.net), Mar 03 2007: (Start)
Using pseudo-Mathematica-style notation, f(a(1),a(2),...,a(k)) is 2^(-1 - a(1)) (a(1)!)^(k-1)/(a(2)! a(3)! ... a(k)!) * HypergeometricPFQRegularized[{1, 1 + a(1), 1 + a(1),..., 1 + a(1)}, {1, 1 + a(1) - a(2), 1 + a(1) - a(3),..., 1 + a(1) - a(k)}, 1/2]
Although it should be obvious from the above that there are k denominatorial parameters, it is not obvious that there are to be (k+1) numeratorial parameters [one of which is 1 and the other k of them are 1 + a(1)]. In other words, we have P = k + 1 and Q = k.
For information about HypergeometricPFQRegularized, see http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/ . (End)
G.f.: hypergeom([1/3,2/3],[1], 54*x/(1-x)^3)/(1-x). - Mark van Hoeij, Mar 25 2012.
Recurrence (of order 3): n^2*(3*n-4)*a(n) = (3*n-2)*(57*n^2 - 95*n + 25)*a(n-1) - (9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) + (n-2)^2*(3*n-1)*a(n-3). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ c * d^n / n, where d = 12*2^(2/3)+15*2^(1/3)+19 = 56.947628372041491... and c = 0.2805916350775843477992461458421909485724690193829181355064... = sqrt((6 + 5*2^(1/3) + 4*2^(2/3))/6)/(2*Pi). - Vaclav Kotesovec, Mar 15 2014, updated Mar 22 2016
From Peter Bala, Jan 16 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-2)^(j+k)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). (End)
Extensions
More terms from Max Alekseyev, Mar 03 2007
A210472 Number A(n,k) of paths starting at {n}^k to a border position where one component equals 0 using steps that decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 33, 20, 1, 0, 1, 5, 196, 543, 70, 1, 0, 1, 6, 1305, 22096, 10497, 252, 1, 0, 1, 7, 9786, 1304045, 3323092, 220503, 924, 1, 0, 1, 8, 82201, 106478916, 1971644785, 574346824, 4870401, 3432, 1, 0
Offset: 0
Examples
A(0,3) = 1: [(0,0,0)]. A(1,1) = 1: [(1), (0)]. A(1,2) = 2: [(1,1), (0,1)], [(1,1), (1,0)]. A(1,3) = 3: [(1,1,1), (0,1,1)], [(1,1,1), (1,0,1)], [(1,1,1), (1,1,0)]. A(2,1) = 1: [(2), (1), (0)]. A(2,2) = 6: [(2,2), (1,2), (0,2)], [(2,2), (1,2), (1,1), (0,1)], [(2,2), (1,2), (1,1), (1,0)], [(2,2), (2,1), (1,1), (0,1)], [(2,2), (2,1), (1,1), (1,0)], [(2,2), (2,1), (2,0)]. Square array A(n,k) begins: 0, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 1, 6, 33, 196, 1305, ... 0, 1, 20, 543, 22096, 1304045, ... 0, 1, 70, 10497, 3323092, 1971644785, ... 0, 1, 252, 220503, 574346824, 3617739047205, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..24, flattened
Crossrefs
Programs
-
Maple
b:= proc() option remember; `if`(nargs=0, 0, `if`(args[1]=0, 1, add(b(sort(subsop(i=args[i]-1, [args]))[]), i=1..nargs))) end: A:= (n, k)-> b(n$k): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[] = 0; b[args__] := b[args] = If[First[{args}] == 0, 1, Sum[b @@ Sort[ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]]; a[n_, k_] := b @@ Array[n&, k]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
A316674 Number A(n,k) of paths from {0}^k to {n}^k that always move closer to {n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 13, 26, 4, 1, 1, 75, 818, 252, 8, 1, 1, 541, 47834, 64324, 2568, 16, 1, 1, 4683, 4488722, 42725052, 5592968, 26928, 32, 1, 1, 47293, 617364026, 58555826884, 44418808968, 515092048, 287648, 64, 1
Offset: 0
Comments
A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n. - Andrew Howroyd, Jan 23 2020
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 13, 75, 541, ... 1, 2, 26, 818, 47834, 4488722, ... 1, 4, 252, 64324, 42725052, 58555826884, ... 1, 8, 2568, 5592968, 44418808968, 936239675880968, ... 1, 16, 26928, 515092048, 50363651248560, 16811849850663255376, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..48, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(k=0, 1, ceil(2^(n-1))*add(add((-1)^i* binomial(j, i)*binomial(j-i, n)^k, i=0..j), j=0..k*n)): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
A[n_, k_] := Sum[If[k == 0, 1, Binomial[j+n-1, n]^k] Sum[(-1)^(i-j)* Binomial[i, j], {i, j, n k}], {j, 0, n k}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 04 2021 *)
-
PARI
T(n,k)={my(m=n*k); sum(j=0, m, binomial(j+n-1,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020
Formula
A(n,k) = Sum_{j=0..n*k} binomial(j+n-1,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020
A062208 a(n) = Sum_{m>=0} binomial(m,3)^n*2^(-m-1).
1, 1, 63, 16081, 10681263, 14638956721, 35941784497263, 143743469278461361, 874531783382503604463, 7687300579969605991710001, 93777824804632275267836362863, 1537173608464960118370398000894641, 32970915649974341628739088902163732463
Offset: 0
Comments
Number of alignments of n strings of length 3.
Conjectures: a(2*n) = 3 (mod 60) and a(2*n+1) = 1 (mod 60); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. - Peter Bala, Feb 04 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
Crossrefs
Programs
-
Maple
A000629 := proc(n) local k ; sum( k^n/2^k,k=0..infinity) ; end: A062208 := proc(n) local a,stir,ni,n1,n2,n3,stir2,i,j,tmp ; a := 0 ; if n = 0 then RETURN(1) ; fi ; stir := combinat[partition](n) ; stir2 := {} ; for i in stir do if nops(i) <= 3 then tmp := i ; while nops(tmp) < 3 do tmp := [op(tmp),0] ; od: tmp := combinat[permute](tmp) ; for j in tmp do stir2 := stir2 union { j } ; od: fi ; od: for ni in stir2 do n1 := op(1,ni) ; n2 := op(2,ni) ; n3 := op(3,ni) ; a := a+combinat[multinomial](n,n1,n2,n3)*(A000629(3*n1+2*n2+n3)-1/2-2^(3*n1+2*n2+n3)/4)*(-3)^n2*2^n3 ; od: a/(2*6^n) ; end: seq(A062208(n),n=0..14) ; # R. J. Mathar, Apr 01 2008 a:=proc(n) options operator, arrow: sum(binomial(m, 3)^n*2^(-m-1),m=0.. infinity) end proc: seq(a(n),n=0..12); # Emeric Deutsch, Mar 22 2008
-
Mathematica
a[n_] = Sum[2^(-1-m)*((m-2)*(m-1)*m)^n, {m, 0, Infinity}]/6^n; a /@ Range[0, 12] (* Jean-François Alcover, Jul 13 2011 *) With[{r = 3}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 3^(2*n + 1/2) * n!^3 / (Pi * n * 2^(n+3) * (log(2))^(3*n+1)).
a(n) ~ sqrt(Pi)*3^(2*n+1/2)*n^(3*n+1/2) / (2^(n+3/2)*exp(3*n)*(log(2))^(3*n+1)).
(End)
a(n) = Sum_{k = 3..3*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)* binomial(i,3)^n. Row sums of A299041. - Peter Bala, Feb 04 2018
Extensions
New definition from Vladeta Jovovic, Mar 01 2008
Edited by N. J. A. Sloane, Sep 19 2009 at the suggestion of Max Alekseyev
A229345 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by the same positive integer; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 22, 4, 1, 1, 25, 248, 188, 8, 1, 1, 121, 6506, 11380, 1712, 16, 1, 1, 721, 292442, 2359348, 577124, 16098, 32, 1, 1, 5041, 19450082, 1088626684, 991365512, 30970588, 154352, 64, 1
Offset: 0
Examples
A(2,2) = 22: [(2,2),(1,1),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)], [(2,2),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(1,2),(1,0),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(0,2),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(0,1),(0,0)], [(2,2),(2,1),(2,0),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,0)], [(2,2),(2,0),(1,0),(0,0)], [(2,2),(2,0),(0,0)]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 7, 25, 121, ... 1, 2, 22, 248, 6506, 292442, ... 1, 4, 188, 11380, 2359348, 1088626684, ... 1, 8, 1712, 577124, 991365512, 4943064622568, ... 1, 16, 16098, 30970588, 453530591824, 25162900228200976, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..20, flattened
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; local m; m:= nops(l); `if`(m=0 or l[m]=0, 1, `if`(m>1, add(b(l-[j$m]), j=1..l[1]), 0)+ add(add(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..m)) end: A:= (n, k)-> b([n$k]): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 24 2013
-
Mathematica
b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}], 0] + Sum[Sum[b[Sort[ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]]; a[n_, k_] := b[Array[n&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
A062205 Number of alignments of n strings of length 4.
1, 1, 321, 699121, 5552351121, 117029959485121, 5402040231378569121, 480086443888959812703121, 74896283763383392805211587121, 19133358944433370977791260580721121, 7581761490297442738124283591348762605121, 4461925444770180839552702516305804230194739121
Offset: 0
Keywords
Comments
Conjectures: a(n) == 1 (mod 80); for fixed k, the sequence a(n) (mod k) eventually becomes periodic. - Peter Bala, Dec 19 2019
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
With[{r = 4}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
From Vaclav Kotesovec, Mar 22 2016: (Start)
a(n) ~ 2^(5*n-3) * n!^4 / (Pi^(3/2) * n^(3/2) * 3^n * (log(2))^(4*n+1)).
a(n) ~ sqrt(Pi) * 2^(5*n-1) * n^(4*n+1/2) / (3^n * exp(4*n) * (log(2))^(4*n+1)).
(End)
It appears that a(n) = (1/(2*6^n))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k) *A055203(n+k) for n >= 1. - Peter Bala, Dec 19 2019
Extensions
Revised by Max Alekseyev, Mar 13 2009
A331277 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and columns in decreasing lexicographic order.
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 6, 1, 1, 0, 1, 62, 31, 1, 1, 0, 1, 900, 2649, 160, 1, 1, 0, 1, 16824, 441061, 116360, 841, 1, 1, 0, 1, 384668, 121105865, 231173330, 5364701, 4494, 1, 1, 0, 1, 10398480, 49615422851, 974787170226, 131147294251, 256452714, 24319, 1, 1
Offset: 0
Comments
The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with k edges and no isolated vertices. When n=2 these objects are graphs.
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 6 ----+--------------------------------------------------------------- 0 | 1 1 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 1 6 62 900 16824 384668 ... 3 | 1 1 31 2649 441061 121105865 49615422851 ... 4 | 1 1 160 116360 231173330 974787170226 ... 5 | 1 1 841 5364701 131147294251 ... 6 | 1 1 4494 256452714 78649359753286 ... ... The A(2,2) = 6 matrices are: [1 0] [1 0] [1 0] [1 1] [1 0] [1 0] [1 0] [0 1] [0 1] [1 0] [1 1] [0 1] [0 1] [1 0] [0 1] [0 1] [0 1] [1 1] [0 1] [0 1] [1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
T(n,k)={my(m=n*k); sum(j=0, m, binomial(binomial(j,n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
A062204 Number of alignments of n strings of length 7.
1, 1, 48639, 75494983297, 1177359342144641535, 103746115308050354021387521, 36585008462723983824862891403150079, 41020870889694863957061607086939138327565057, 124069835911824710311393852646151897334844371419287295
Offset: 0
Keywords
Comments
Strings of length 7 represent the average word length for most natural languages such as English. This sequence represents the search space for alignment and sequencing algorithms that work on multiple sets of strings.
The assertion that "strings of length 7 represent the average word length for most natural languages such as English" seems to conflict with studies that show that the average word length in English is about 4.5 letters and the average word length in modern Russian is 5.28 letters. - M. F. Hasler, Mar 12 2009
In general, row r > 0 of A262809 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
Examples
A(2, 7) = 48639 since this represents the number of distinct alignments of 2 strings of length 7. All values in A(2,X) can be cross-validated against the Delannoy sequence D(X,X) A001850.
References
- M. S. Waterman, Introduction to Computational Biology: Maps, Sequences and Genomes, 1995.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- M. A. Covington, The number of distinct alignments of two strings, Journal of Quantitative Linguistics, Volume 11, no. 3 (2004), 173-182.
- Michael S. Waterman, Home Page (contains copies of his papers)
Crossrefs
Programs
-
Mathematica
With[{r = 7}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
A(n, y) = sum(k=0,n*y, sum(t=0,k, (-1)^t * binomial(k,t) * binomial(k-t,y)^n )).
a(n) ~ sqrt(7*Pi) * (7^6/6!)^n * n^(7*n+1/2) / (2^(7/2) * exp(7*n) * (log(2))^(7*n+1)). - Vaclav Kotesovec, Mar 23 2016
Extensions
Formula and sequence revised by Max Alekseyev, Mar 12 2009
A263064 Number of lattice paths from (n,n,n,n) to (0,0,0,0) using steps that decrement one or more components by one.
1, 75, 23917, 10681263, 5552351121, 3147728203035, 1887593866439485, 1177359342144641535, 756051015055329306625, 496505991344667030490635, 331910222316215755702672557, 225110028217225196478861017775, 154515942591851050758389232988689
Offset: 0
Keywords
Comments
Also, the number of alignments for 4 sequences of length n each (Slowinski 1998).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
Crossrefs
Column k=4 of A262809.
Programs
-
Mathematica
With[{k = 4}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)
Formula
Recurrence: (n-1)*n^3*(864*n^4 - 6480*n^3 + 17763*n^2 - 21015*n + 9059)*a(n) = 15*(n-1)*(44928*n^7 - 404352*n^6 + 1459788*n^5 - 2712556*n^4 + 2772389*n^3 - 1538829*n^2 + 423093*n - 43506)*a(n-1) + (188352*n^8 - 2166048*n^7 + 10541118*n^6 - 28166748*n^5 + 44769259*n^4 - 42719172*n^3 + 23364582*n^2 - 6470217*n + 671094)*a(n-2) + 3*(n-2)*(3456*n^7 - 38016*n^6 + 169116*n^5 - 388336*n^4 + 486619*n^3 - 322644*n^2 + 100014*n - 10989)*a(n-3) - (n-3)^3*(n-2)*(864*n^4 - 3024*n^3 + 3507*n^2 - 1473*n + 191)*a(n-4). - Vaclav Kotesovec, Mar 22 2016
a(n) ~ sqrt(8 + 6*sqrt(2) + sqrt(140 + 99*sqrt(2))) * (195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)))^n / (8 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 22 2016
A384362 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = Sum_{i=0..k*n} 2^i * Sum_{j=0..i} (-1)^j * binomial(i,j) * binomial(i-j,n)^k.
1, 1, 1, 1, 2, 1, 1, 10, 4, 1, 1, 74, 148, 8, 1, 1, 730, 13540, 2440, 16, 1, 1, 9002, 2308756, 3087368, 42256, 32, 1, 1, 133210, 632363044, 10208479240, 778026256, 752800, 64, 1, 1, 2299754, 253970683348, 69754997963528, 52520969994256, 207633589664, 13660480, 128, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 2, 10, 74, 730, ... 1, 4, 148, 13540, 2308756, ... 1, 8, 2440, 3087368, 10208479240, ... 1, 16, 42256, 778026256, 52520969994256, ...
Crossrefs
Programs
-
PARI
a(n, k) = sum(i=0, k*n, 2^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
Formula
A(n,k) = (1/3) * Sum_{j>=0} (2/3)^j * binomial(j,n)^k.
Comments