cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A274910 Largest prime factor of 11^n - 1.

Original entry on oeis.org

5, 5, 19, 61, 3221, 37, 45319, 7321, 1772893, 13421, 1806113, 1117, 3158528101, 1623931, 195019441, 6304673, 50544702849929377, 1772893, 6115909044841454629, 212601841, 45319, 1806113, 3740221981231, 20113, 1856458657451, 3158528101, 5559917315850179173
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			11^4 - 1 = 14640 = 2^4*3*5*61, so a(4) = 61.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(11^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[11^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024127(n)).

Extensions

Terms to a(70) in b-file from Vincenzo Librandi, Jul 13 2016
a(71)-a(306) in b-file from Amiram Eldar, Feb 08 2020
a(307)-a(316) in b-file from Max Alekseyev, Apr 25 2022, Oct 26 2023

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).

A358699 a(n) is the largest prime factor of 2^(prime(n) - 1) - 1.

Original entry on oeis.org

3, 5, 7, 31, 13, 257, 73, 683, 127, 331, 109, 61681, 5419, 2796203, 8191, 3033169, 1321, 599479, 122921, 38737, 22366891, 8831418697, 2931542417, 22253377, 268501, 131071, 28059810762433, 279073, 54410972897, 77158673929, 145295143558111, 2879347902817, 10052678938039
Offset: 2

Views

Author

Hugo Pfoertner, Nov 27 2022

Keywords

Crossrefs

Subsequence of A005420 and of A274906.

Programs

  • PARI
    forprime (p=3, 140, my(f=factor(2^(p-1)-1)); print1(f[#f[,1],1],", "))
    
  • Python
    from sympy import primefactors, sieve
    def A358699(n): return primefactors(2**(sieve[n]-1)-1)[-1] # Karl-Heinz Hofmann, Nov 28 2022

Formula

a(n) = A006530(A098102(n)). - Michel Marcus, Nov 28 2022
a(n) = A005420(A006093(n)). - Amiram Eldar, Dec 01 2022

A187063 Numbers of the form (4^k - 1)/3 whose greatest prime divisor is of the form 2^q - 1 or 2^q + 1.

Original entry on oeis.org

5, 21, 85, 341, 5461, 21845, 22369621, 89478485, 1431655765, 5726623061, 91625968981, 1501199875790165, 1537228672809129301, 98382635059784275285, 1690200800304305868662270940501, 1772303994379887830538409413707126101
Offset: 1

Views

Author

Michel Lagneau, Mar 03 2011

Keywords

Comments

The binary expansion of (4^k-1)/3 has no consecutive equal binary digits.
The corresponding values of k are 2, 3, 4, 5, 7, 8, 13, 14, 16, 17, 19, 26, 31, 34, 51, 61, 62, 89, 107, 122, 127, 178, 214, 254, 521, ... - Amiram Eldar, Mar 02 2020

Examples

			(4^6-1)/3 = 1365 = 3 * 5 * 7 * 13 is not in the sequence because  13 is not of the form 2^q +/- 1 ;
(4^16-1)/3 = 1431655765 = 5 * 17 * 257 * 65537 and 65537 = 2^16 + 1.
		

Crossrefs

Cf. A002450 ((4^n-1)/3), A274906.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k, t, d, h;
          for k from 1+ `if`(n=1, 0, ilog[4](a(n-1)*3+1))
          do t:= (4^k-1)/3;
             d:= max(factorset(t)[]);
             for h in [d+1, d-1] do
                if 2^ilog[2](h)=h then RETURN(t) fi
             od
          od
        end:
    seq(a(n), n=1..17);  # Alois P. Heinz, Mar 04 2011
  • Mathematica
    okQ[n_] := Module[{p = FactorInteger[n][[-1, 1]]}, IntegerQ[Log[2, p + 1]] || IntegerQ[Log[2, p - 1]]]; t = Table[(4^n-1)/3, {n,2,50}]; Select[t, okQ] (* T. D. Noe, Mar 04 2011 *)
Previous Showing 11-14 of 14 results.