cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A302796 Squarefree numbers whose prime indices are relatively prime. Nonprime Heinz numbers of strict integer partitions with relatively prime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 42, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 78, 82, 85, 86, 93, 94, 95, 102, 105, 106, 110, 114, 118, 119, 122, 123, 130, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 174, 177, 178, 182
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
42 : {1,2,4}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&GCD@@PrimePi/@FactorInteger[#][[All,1]]===1]&]
  • PARI
    isok(n) = {if (n == 1, return (1)); if (issquarefree(n), my(f = factor(n)); return (gcd(vector(#f~, k, primepi(f[k,1]))) == 1););} \\ Michel Marcus, Apr 13 2018

A302243 Total weight of the n-th twice-odd-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 3, 3, 2, 2, 3, 2, 1, 2, 3, 3, 3, 1, 2, 3, 2, 4, 2, 4, 2, 4, 1, 3, 4, 3, 1, 3, 3, 2, 3, 3, 2, 4, 1, 2, 3, 4, 4, 2, 4, 2, 3, 2, 3, 4, 3, 1, 4, 3, 3, 4, 3, 2, 2, 3, 1, 3, 5, 5, 4, 2, 2, 3, 3, 3, 5, 2, 4, 3, 2, 1, 5, 4, 2, 3, 2, 4, 5, 4, 4
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-odd-factored multiset partition is constructed by factoring 2n + 1 into prime numbers and then factoring each prime index into prime numbers and taking their prime indices.

Examples

			Sequence of multiset partitions begins: (), ((1)), ((2)), ((11)), ((1)(1)), ((3)), ((12)), ((1)(2)), ((4)), ((111)), ((1)(11)), ((22)), ((2)(2)), ((1)(1)(1)), ((13)), ((5)), ((1)(3)), ((2)(11)), ((112)), ((1)(12)), ((6)).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Sum[PrimeOmega[k],{k,primeMS[2n-1]}],{n,100}]

Formula

a(n) = A302242(2n + 1).

A303546 Number of non-isomorphic aperiodic multiset partitions of weight n.

Original entry on oeis.org

1, 3, 9, 29, 90, 285, 909, 2984, 9935, 34113, 119368, 428923, 1574223, 5915235, 22699730, 89000042, 356058539, 1453069854, 6044132793, 25612564200, 110503626702, 485161228675, 2166488899641, 9835209480533, 45370059225227
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime. For this sequence neither the parts nor their multiset union are required to be aperiodic, only the multiset of parts.

Examples

			Non-isomorphic representatives of the a(3) = 9 aperiodic multiset partitions are:
  {{1,1,1}}, {{1,2,2}}, {{1,2,3}},
  {{1},{1,1}}, {{1},{2,2}}, {{1},{2,3}}, {{2},{1,2}},
  {{1},{2},{2}}, {{1},{2},{3}}.
		

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d) * A007716(n/d).

A317145 Number of maximal chains of factorizations of n into factors > 1, ordered by refinement.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 15, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 11, 1, 3, 1, 2, 1, 3, 1, 26, 1, 1, 2, 2, 1, 3, 1, 15, 2, 1, 1, 11, 1, 1, 1, 5, 1, 11, 1, 2, 1, 1, 1, 52, 1, 2, 2, 7, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2018

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Oct 08 2018

Examples

			The a(36) = 7 maximal chains:
  (2*2*3*3) < (2*2*9) < (2*18) < (36)
  (2*2*3*3) < (2*2*9) < (4*9)  < (36)
  (2*2*3*3) < (2*3*6) < (2*18) < (36)
  (2*2*3*3) < (2*3*6) < (3*12) < (36)
  (2*2*3*3) < (2*3*6) < (6*6)  < (36)
  (2*2*3*3) < (3*3*4) < (3*12) < (36)
  (2*2*3*3) < (3*3*4) < (4*9)  < (36)
		

Crossrefs

Programs

  • PARI
    A064988(n) = { my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]); ); factorback(f); }; \\ From A064988
    memoA320105 = Map();
    A320105(n) = if(bigomega(n)<=2,1,if(mapisdefined(memoA320105,n), mapget(memoA320105,n), my(f=factor(n), u = #f~, s = 0); for(i=1,u,for(j=i+(1==f[i,2]),u, s += A320105(prime(primepi(f[i,1])*primepi(f[j,1]))*(n/(f[i,1]*f[j,1]))))); mapput(memoA320105,n,s); (s)));
    A317145(n) = A320105(A064988(n)); \\ Antti Karttunen, Oct 08 2018

Formula

a(prime^n) = A002846(n).
a(n) = A320105(A064988(n)). - Antti Karttunen, Oct 08 2018

Extensions

Data section extended to 105 terms by Antti Karttunen, Oct 08 2018

A302505 Numbers whose prime indices are squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 17, 20, 22, 24, 26, 29, 30, 31, 32, 33, 34, 40, 41, 43, 44, 47, 48, 51, 52, 55, 58, 59, 60, 62, 64, 66, 67, 68, 73, 79, 80, 82, 83, 85, 86, 88, 93, 94, 96, 101, 102, 104, 109, 110, 113, 116, 118, 120, 123, 124, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Join@@primeMS/@primeMS[#]&]

A302590 Squarefree numbers whose prime indices are prime numbers.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
From David A. Corneth, Feb 05 2021: (Start)
Product_{p in A006450} (p + 1)/p where primepi(p) <= 10^k for k = 3..9 respectively is
2.3221793975627545730894469494385382768...
2.3962097386916566795581118542505513350...
2.4423525010102788492232765893521739629...
2.4739349879225654126399615785205666552...
2.4969363158706022367680967716958174889...
2.5144436325229538304870684054018856517...
2.5282263225826916578696019016723107071... (End)

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
  • PARI
    ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A005117 and A076610.
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 82, 85, 86, 93, 94, 95, 102, 106, 110, 118, 119, 122, 123, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 177, 178, 186, 187, 190, 194, 201, 202
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
69 : {2,9}
70 : {1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]]&]

A302540 Numbers whose prime indices other than 1 are prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
  • PARI
    ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{n>=1} 1/A076610(n) = 2 * Product_{p in A006450} p/(p-1) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302697 Odd numbers whose prime indices are relatively prime. Heinz numbers of integer partitions with no 1's and with relatively prime parts.

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 309, 315, 323, 327, 329
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of integer partitions with no 1's and with relatively prime parts begins:
015: (3,2)
033: (5,2)
035: (4,3)
045: (3,2,2)
051: (7,2)
055: (5,3)
069: (9,2)
075: (3,3,2)
077: (5,4)
085: (7,3)
093: (11,2)
095: (8,3)
099: (5,2,2)
105: (4,3,2)
119: (7,4)
123: (13,2)
135: (3,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,200,2],GCD@@primeMS[#]===1&]

A302492 Products of any power of 2 with prime numbers of prime-power index, i.e., prime numbers p of the form p = prime(q^k), for q prime, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 72, 75, 76, 77, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,And@@PrimePowerQ/@PrimePi/@DeleteCases[FactorInteger[#][[All,1]],2]]&]
  • PARI
    ok(n)={!#select(p->p<>2&&!isprimepower(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
Previous Showing 11-20 of 54 results. Next