cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 122 results. Next

A326017 Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 3, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 1, 1, 0, 1, 1, 2, 2, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 1, 4, 3, 2, 1, 1, 0, 1, 1, 3, 3, 4, 6, 4, 3, 2, 1, 1, 0, 1, 1, 1, 1, 3, 1, 6, 4
Offset: 0

Views

Author

Gus Wiseman, Jun 03 2019

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  1  1  1
  0  1  1  2  1  1
  0  1  1  1  2  1  1
  0  1  1  2  3  2  1  1
  0  1  1  2  1  3  2  1  1
  0  1  1  2  2  4  3  2  1  1
  0  1  1  2  3  1  4  3  2  1  1
  0  1  1  3  3  4  6  4  3  2  1  1
  0  1  1  1  1  3  1  6  4  3  2  1  1
  0  1  1  3  3  5  4  7  6  4  3  2  1  1
  0  1  1  2  3  5  4  1  7  6  4  3  2  1  1
  0  1  1  2  3  4  6  6 11  7  6  4  3  2  1  1
Row n = 9 counts the following partitions:
  (111111111)  (22221)  (333)   (432)  (54)     (63)    (72)   (81)  (9)
                        (3222)  (441)  (522)    (621)   (711)
                                       (531)    (6111)
                                       (51111)
		

Crossrefs

Programs

  • Mathematica
    ks[n_]:=Select[IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&];
    Table[Length[Select[ks[n],Length[#]==k==0||Max@@#==k&]],{n,0,15},{k,0,n}]

A325855 Number of strict integer partitions of n such that every pair of distinct parts has a different product.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 22, 25, 31, 37, 44, 53, 59, 69, 83, 100, 111, 129, 152, 173, 198, 232, 260, 302, 342, 386, 448, 498, 565, 646, 728, 819, 918, 1039, 1164, 1310, 1462, 1631, 1830, 2053, 2282, 2532, 2825, 3136, 3482, 3869, 4300, 4744
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(10) = 10 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)   (64)
                        (41)  (51)   (52)   (62)   (63)   (73)
                              (321)  (61)   (71)   (72)   (82)
                                     (421)  (431)  (81)   (91)
                                            (521)  (432)  (532)
                                                   (531)  (541)
                                                   (621)  (631)
                                                          (721)
                                                          (4321)
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Times@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325865 Number of maximal subsets of {1..n} of which every subset has a different sum.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 14, 23, 27, 40, 64, 104, 180, 275, 399, 554, 679, 872, 1117, 1431, 1920, 2520, 3530, 4751, 6644, 8855, 12021, 15461, 19939, 25109, 31656, 38750, 46204, 55650, 65942, 78045, 91304, 106592, 124761, 145701, 172343, 201217, 238739, 280601, 339746, 400394
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 14 subsets:
  {1}  {1,2}  {1,2}  {1,3}    {1,2,4}  {1,2,4}
              {1,3}  {1,2,4}  {1,2,5}  {1,2,5}
              {2,3}  {2,3,4}  {1,3,5}  {1,2,6}
                              {2,3,4}  {1,3,5}
                              {2,4,5}  {1,3,6}
                              {3,4,5}  {1,4,6}
                                       {2,3,4}
                                       {2,3,6}
                                       {2,4,5}
                                       {2,5,6}
                                       {3,4,5}
                                       {3,4,6}
                                       {3,5,6}
                                       {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[#]&]]],{n,0,10}]
  • PARI
    a(n)={
      my(ismaxl(w)=for(k=1, n, if(!bitand(w,w< n, ismaxl(w),
             my(s=self()(k+1, b,w));
             if(!bitand(w,w<Andrew Howroyd, Mar 23 2025

Extensions

a(18) onwards from Andrew Howroyd, Mar 23 2025

A326016 Number of knapsack partitions of n such that no addition of one part up to the maximum is knapsack.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 0, 1, 0, 8, 0, 8, 4, 3, 0, 11, 5, 3, 2, 5, 0, 29, 2, 9, 8, 20, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2019

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum.
The Heinz numbers of these partitions are given by A326018.

Examples

			The initial terms count the following partitions:
  15: (5,4,3,3)
  21: (7,6,5,3)
  21: (7,5,3,3,3)
  24: (8,7,6,3)
  25: (7,5,5,4,4)
  27: (9,8,7,3)
  27: (9,7,6,5)
  27: (8,7,3,3,3,3)
  31: (10,8,6,6,1)
  33: (11,9,7,3,3)
  33: (11,8,5,5,4)
  33: (11,7,6,6,3)
  33: (11,7,3,3,3,3,3)
  33: (11,5,5,4,4,4)
  33: (10,9,8,3,3)
  33: (10,8,6,6,3)
  33: (10,8,3,3,3,3,3)
		

Crossrefs

Programs

  • Mathematica
    sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
    ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1;
    maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Range[Max@@#]}],ksQ]=={}&];
    Table[Length[maxks[n]],{n,30}]

A325592 Triangle read by rows where T(n,k) is the number of length-k knapsack partitions of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 2, 0, 0, 1, 0, 1, 3, 4, 2, 0, 0, 1, 0, 1, 4, 3, 3, 0, 0, 0, 1, 0, 1, 4, 7, 2, 2, 0, 0, 0, 1, 0, 1, 5, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 5, 10, 6, 4, 2, 0, 0, 0, 0, 1, 0, 1, 6, 9, 5, 1, 2, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

A knapsack partition of n is an integer partition of n whose distinct submultisets all have different sums.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  2  0  1
  0  1  2  2  0  1
  0  1  3  2  0  0  1
  0  1  3  4  2  0  0  1
  0  1  4  3  3  0  0  0  1
  0  1  4  7  2  2  0  0  0  1
  0  1  5  6  4  2  0  0  0  0  1
  0  1  5 10  6  4  2  0  0  0  0  1
  0  1  6  9  5  1  2  0  0  0  0  0  1
  0  1  6 14 10  5  2  2  0  0  0  0  0  1
  0  1  7 13 11  3  3  2  0  0  0  0  0  0  1
  0  1  7 19 16  7  3  2  2  0  0  0  0  0  0  1
Row n = 12 counts the following partitions (A = 10, B = 11, C = 12):
   (C)  (66)   (444)   (3333)  (81111)  (222222)  (111111111111)
        (75)   (543)   (5511)           (711111)
        (84)   (552)   (7221)
        (93)   (732)   (7311)
        (A2)   (741)   (9111)
        (B1)   (822)
               (831)
               (921)
               (A11)
		

Crossrefs

Row sums are A000041.
Column k = 2 is A004526.
Column k = 3 is A325690.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{k}],UnsameQ@@Total/@Union[Subsets[#]]&]],{n,0,15},{k,0,n}]

A325867 Number of maximal subsets of {1..n} containing n such that every subset has a different sum.

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 10, 12, 17, 34, 45, 77, 99, 136, 166, 200, 238, 328, 402, 660, 674, 1166, 1331, 1966, 2335, 3286, 3527, 4762, 5383, 6900, 7543, 9087, 10149, 12239, 13569, 16452, 17867, 22869, 23977, 33881, 33820, 43423, 48090, 68683, 67347, 95176, 97917, 131666, 136205
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Comments

These are maximal strict knapsack partitions (A275972, A326015) organized by maximum rather than sum.

Examples

			The a(1) = 1 through a(8) = 12 subsets:
  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}    {1,3,8}
              {2,3}  {2,3,4}  {1,3,5}  {1,3,6}  {1,3,7}    {1,5,8}
                              {2,4,5}  {1,4,6}  {1,4,7}    {5,7,8}
                              {3,4,5}  {2,3,6}  {1,5,7}    {1,2,4,8}
                                       {2,5,6}  {2,3,7}    {1,4,6,8}
                                       {3,4,6}  {2,4,7}    {2,3,4,8}
                                       {3,5,6}  {2,6,7}    {2,4,5,8}
                                       {4,5,6}  {4,5,7}    {2,4,7,8}
                                                {4,6,7}    {3,4,6,8}
                                                {3,5,6,7}  {3,6,7,8}
                                                           {4,5,6,8}
                                                           {4,6,7,8}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Plus@@@Subsets[#]&]]],{n,15}]
  • Python
    def f(p0, n, m, cm):
        full, t, p = True, 0, p0
        while p>k)&1)==0 and ((m<Bert Dobbelaere, Mar 07 2021

Extensions

More terms from Bert Dobbelaere, Mar 07 2021

A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 4, 8, 4, 11, 9, 16, 14, 25, 20, 37, 31, 49, 47, 73, 64, 101, 96, 135, 133, 190, 181, 256, 253, 336, 342, 453, 452, 596, 609, 771, 803, 1014, 1041, 1309, 1362, 1674, 1760, 2151, 2249, 2736, 2884, 3449, 3661, 4366, 4615, 5486, 5825
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(8) = 2 through a(13) = 11 partitions:
  (8)    (9)      (10)       (11)       (12)       (13)
  (5,3)  (5,4)    (6,4)      (6,5)      (7,5)      (7,6)
         (7,2)    (7,3)      (7,4)      (5,4,3)    (8,5)
         (4,3,2)  (4,3,2,1)  (8,3)      (5,4,2,1)  (9,4)
                             (9,2)                 (10,3)
                             (5,4,2)               (11,2)
                             (6,3,2)               (6,4,3)
                             (5,3,2,1)             (6,5,2)
                                                   (7,4,2)
                                                   (5,4,3,1)
                                                   (6,4,2,1)
		

Crossrefs

The nonnegative version for subsets appears to be A124506.
For sums instead of combinations we have A364349, binary A364533.
The nonnegative version is A364350, complement A364839.
For subsets instead of partitions we have A365044, complement A365043.
The non-strict version is A365072, nonnegative A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365006(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            if max(p.values()) == 1:
                s = set(p)
                for q in s:
                    if tuple(sorted(s-{q})) in alist[q]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A059519 Number of partitions of n all of whose subpartitions sum to distinct values. Partition(n) = [a, b, c...] where 2n = 2^a + 2^b + 2^c + ...

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 80, 81, 84, 88, 96, 98, 100, 104, 112, 116, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140
Offset: 1

Views

Author

Marc LeBrun, Jan 19 2001

Keywords

Comments

Partition encoding as in A029931. Complement of A059520.
From Gus Wiseman, Jul 22 2019: (Start)
These are numbers whose positions of 1's in their reversed binary expansion form a strict knapsack partition (A275972). The initial terms together with their corresponding partitions are:
1: (1)
2: (2)
3: (2,1)
4: (3)
5: (3,1)
6: (3,2)
8: (4)
9: (4,1)
10: (4,2)
11: (4,2,1)
12: (4,3)
14: (4,3,2)
16: (5)
17: (5,1)
18: (5,2)
19: (5,2,1)
20: (5,3)
(End)

Examples

			14=2+4+8 so Partition(14) = [2,3,4], whose sub-sums are 0,2,3,4,5,6,7 and 14.
		

Crossrefs

Other sequences classifying numbers by their binary indices: A291166 (relatively prime), A295235 (arithmetic progression), A326669 (integer average), A326675 (pairwise coprime).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],UnsameQ@@Total/@Subsets[bpe[#]]&] (* Gus Wiseman, Jul 22 2019 *)

A267597 Number of sum-product knapsack partitions of n. Number of integer partitions y of n such that every sum of products of the parts of a multiset partition of any submultiset of y is distinct.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 12, 14, 18, 23, 23, 32, 30, 35, 50, 48, 47, 56, 80, 77, 87, 105, 100, 134, 139, 145, 194, 170, 192, 250
Offset: 0

Views

Author

Gus Wiseman, Oct 04 2018

Keywords

Examples

			The sequence of product-sum knapsack partitions begins:
   0: ()
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   5: (5) (3,2)
   6: (6) (4,2) (3,3)
   7: (7) (5,2) (4,3)
   8: (8) (6,2) (5,3) (4,4)
   9: (9) (7,2) (6,3) (5,4)
  10: (10) (8,2) (7,3) (6,4) (5,5) (4,3,3)
  11: (11) (9,2) (8,3) (7,4) (6,5) (5,4,2) (5,3,3)
The partition (4,4,3) is not a sum-product knapsack partition of 11 because (4*4) = (4)+(4*3).
A complete list of all sums of products of multiset partitions of submultisets of (5,4,2) is:
            0 = 0
          (2) = 2
          (4) = 4
          (5) = 5
        (2*4) = 8
        (2*5) = 10
        (4*5) = 20
      (2*4*5) = 40
      (2)+(4) = 6
      (2)+(5) = 7
    (2)+(4*5) = 22
      (4)+(5) = 9
    (4)+(2*5) = 14
    (5)+(2*4) = 13
  (2)+(4)+(5) = 11
These are all distinct, so (5,4,2) is a sum-product knapsack partition of 11.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    rrtuks[n_]:=Select[IntegerPartitions[n],Function[q,UnsameQ@@Apply[Plus,Apply[Times,Union@@mps/@Union[Subsets[q]],{2}],{1}]]];
    Table[Length[rrtuks[n]],{n,12}]

Extensions

a(13)-a(37) from Sean A. Irvine, Jul 13 2022

A319315 Heinz numbers of integer partitions such that every distinct submultiset has a different average.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Note that such a Heinz number is necessarily squarefree, as such a partition is necessarily strict.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
First differs from A301899 at a(43) = 70, because (4,3,1) is not knapsack but every submultiset has a different average.

Examples

			The sequence of partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (3), (2,1), (4), (3,1), (5), (6), (4,1), (3,2), (7), (8), (4,2), (5,1), (9), (6,1), (10), (11), (5,2), (7,1), (4,3), (12), (8,1), (6,2), (13), (4,2,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Mean/@Union[Subsets[primeMS[#]]]&]
Previous Showing 61-70 of 122 results. Next