cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A387110 Number of ways to choose a sequence of distinct integer partitions, one of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 3, 2, 5, 0, 2, 3, 7, 0, 11, 5, 6, 0, 15, 2, 22, 0, 10, 7, 30, 0, 6, 11, 0, 0, 42, 6, 56, 0, 14, 15, 15, 0, 77, 22, 22, 0, 101, 10, 135, 0, 6, 30, 176, 0, 20, 6, 30, 0, 231, 0, 21, 0, 44, 42, 297, 0, 385, 56, 10, 0, 33, 14, 490, 0, 60, 15, 627, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 9 are (2,2), and there are a(9) = 2 choices:
  ((2),(1,1))
  ((1,1),(2))
The prime indices of 15 are (2,3), and there are a(15) = 5 choices:
  ((2),(3))
  ((2),(2,1))
  ((2),(1,1,1))
  ((1,1),(2,1))
  ((1,1),(1,1,1))
		

Crossrefs

Positions of zeros are A276078 (choosable), complement A276079 (non-choosable).
Allowing repeated partitions gives A299200, A357977, A357982, A357978.
For multiset systems see A355529, A355744, A367771, set systems A367901-A367905.
For prime factors instead of partitions see A355741, A355742, A387136.
The disjoint case is A383706.
For initial intervals instead of partitions we have A387111.
The case of strict partitions is A387115.
The case of constant partitions is A387120.
Taking each prime factor (instead of index) gives A387133.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[IntegerPartitions/@prix[n]],UnsameQ@@#&]],{n,100}]

A325127 Numbers in whose prime factorization the exponent of prime(k) is greater than k for all prime indices k.

Original entry on oeis.org

1, 4, 8, 16, 27, 32, 64, 81, 108, 128, 216, 243, 256, 324, 432, 512, 625, 648, 729, 864, 972, 1024, 1296, 1728, 1944, 2048, 2187, 2500, 2592, 2916, 3125, 3456, 3888, 4096, 5000, 5184, 5832, 6561, 6912, 7776, 8192, 8748, 10000, 10368, 11664, 12500, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears more than k times. Such partitions are counted by A115584.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  128: {1,1,1,1,1,1,1}
  216: {1,1,1,2,2,2}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
  512: {1,1,1,1,1,1,1,1,1}
  625: {3,3,3,3}
  648: {1,1,1,2,2,2,2}
  729: {2,2,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  972: {1,1,2,2,2,2,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>PrimePi[p]]&]
    With[{k = 4}, m = Prime[k]^(k + 1); s = {}; Do[p = Prime[i]; AppendTo[s, Join[{1}, p^Range[i + 1, Floor[Log[p, m]]]]], {i, 1, k}]; Union @ Select[Times @@@ Tuples[s], # <= m &]] (* Amiram Eldar, Oct 24 2020 *)

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^k * (prime(k)-1)) = 1.58661114052385082598.... - Amiram Eldar, Oct 24 2020

A325130 Numbers in whose prime factorization the exponent of prime(k) is not equal to k for any prime index k.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the integer partitions counted by A276429.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.68974964705635552968... - Amiram Eldar, Jan 09 2021

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  12: {1,1,2}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
  28: {1,1,4}
		

Crossrefs

Programs

  • Maple
    q:= n-> andmap(i-> numtheory[pi](i[1])<>i[2], ifactors(n)[2]):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 0, a(n-1)) while not q(k) do od; k
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    Select[Range[100],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k!=PrimePi[p]]&]

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

Original entry on oeis.org

1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    7: {4}
   14: {1,4}
   23: {9}
   46: {1,9}
   53: {16}
   97: {25}
  106: {1,16}
  151: {36}
  161: {4,9}
  194: {1,25}
  227: {49}
  302: {1,36}
  311: {64}
  322: {1,4,9}
  371: {4,16}
  419: {81}
  454: {1,49}
  541: {100}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.

A352141 Numbers whose prime factorization has all even indices and all even exponents.

Original entry on oeis.org

1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444.

Examples

			The terms together with their prime indices begin:
     1 = 1
     9 = prime(2)^2
    49 = prime(4)^2
    81 = prime(2)^4
   169 = prime(6)^2
   361 = prime(8)^2
   441 = prime(2)^2 prime(4)^2
   729 = prime(2)^6
   841 = prime(10)^2
  1369 = prime(12)^2
  1521 = prime(2)^2 prime(6)^2
  1849 = prime(14)^2
  2401 = prime(4)^4
  2809 = prime(16)^2
  3249 = prime(2)^2 prime(8)^2
  3721 = prime(18)^2
  3969 = prime(2)^4 prime(4)^2
		

Crossrefs

The second condition alone (all even exponents) is A000290, counted by A035363.
The restriction to primes is A031215.
These partitions are counted by A035444.
The first condition alone is A066207, counted by A035363, squarefree A258117.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A352141_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
    A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A000290 and A066207.
A257991(a(n)) = A162642(a(n)) = 0.
A257992(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - Amiram Eldar, Sep 19 2022

A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.

Original entry on oeis.org

1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
All terms are odd. - Michael S. Branicky, Mar 12 2022

Examples

			The terms together with their prime indices begin:
      1 = 1
      3 = prime(2)^1
      7 = prime(4)^1
     13 = prime(6)^1
     19 = prime(8)^1
     21 = prime(4)^1 prime(2)^1
     27 = prime(2)^3
     29 = prime(10)^1
     37 = prime(12)^1
     39 = prime(6)^1 prime(2)^1
     43 = prime(14)^1
     53 = prime(16)^1
     57 = prime(8)^1 prime(2)^1
     61 = prime(18)^1
     71 = prime(20)^1
		

Crossrefs

The restriction to primes is A031215.
These partitions are counted by A055922 (aerated).
The first condition alone is A066207, counted by A035363.
The squarefree case is A258117.
The second condition alone is A268335, counted by A055922.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        if n%2 == 0: return False
        return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
    print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Intersection of A066207 and A268335.
A257991(a(n)) = A162641(a(n)) = 0.
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A001222(a(n)).

A387137 Number of integer partitions of n whose parts do not have choosable sets of strict integer partitions.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 14, 20, 29, 39, 56, 74, 101, 134, 178, 232, 305, 392, 508, 646, 825, 1042, 1317, 1649, 2066, 2567, 3190, 3937, 4859, 5960, 7306, 8914, 10863, 13183, 15984, 19304, 23288, 28003, 33631, 40272, 48166, 57453, 68448, 81352, 96568, 114383
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.
a(n) is the number of integer partitions of n such that it is not possible to choose a sequence of distinct strict integer partitions, one of each part.
Also the number of integer partitions of n with at least one part k whose multiplicity exceeds A000009(k).

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (422)
               (211)   (311)    (411)     (511)      (611)
               (1111)  (2111)   (2211)    (2221)     (2222)
                       (11111)  (3111)    (3211)     (3221)
                                (21111)   (4111)     (3311)
                                (111111)  (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement for initial intervals is A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
For divisors instead of strict partitions we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of strict partitions we have A370593, ranks A355529.
For initial intervals instead of strict partitions we have A387118, ranks A387113.
For all partitions instead of strict partitions we have A387134, ranks A387577.
These partitions are ranked by A387176.
The complement is counted by A387178, ranks A387177.
The complement for partitions is A387328, ranks A387576.
The version for constant partitions is A387329, ranks A387180.
The complement for constant partitions is A387330, ranks A387181.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[Tuples[strptns/@#],UnsameQ@@#&]]==0&]],{n,0,15}]

A276936 Numbers m with at least one distinct prime factor prime(k) such that prime(k)^k divides, but prime(k)^(k+1) does not divide m.

Original entry on oeis.org

2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 36, 38, 42, 45, 46, 50, 54, 58, 62, 63, 66, 70, 72, 74, 78, 82, 86, 90, 94, 98, 99, 102, 106, 110, 114, 117, 118, 122, 125, 126, 130, 134, 138, 142, 144, 146, 150, 153, 154, 158, 162, 166, 170, 171, 174, 178, 180, 182, 186, 190, 194, 198, 202, 206, 207, 210, 214, 218, 222, 225
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

Numbers m with at least one prime factor such that the exponent of its highest power in m is equal to the index of that prime.
The asymptotic density of this sequence is 1 - Product_{k>=1} (1 - 1/prime(k)^k + 1/prime(k)^(k+1)) = 0.31025035294364447031... - Amiram Eldar, Jan 09 2021

Examples

			2 is a member as 2 = prime(1) and as 2^1 divides but 2^2 does not divide 2.
3 is NOT a member as 3 = prime(2) but 3^2 does not divide 3.
4 is NOT a member as 2^2 divides 4.
6 is a member as 2 = prime(1) and 2^1 is a divisor of 6, but 2^2 is not.
9 is a member as 3 = prime(2) and 3^2 divides 9.
		

Crossrefs

Intersection with A276078 gives A276937.
Cf. A016825, A051063 (subsequences).
Complement of A325130.

Programs

  • Maple
    q:= n-> ormap(i-> numtheory[pi](i[1])=i[2], ifactors(n)[2]):
    select(q, [$1..225])[];  # Alois P. Heinz, Nov 18 2024
  • Mathematica
    Select[Range[225], AnyTrue[FactorInteger[#], PrimePi[First[#1]] == Last[#1] &] &] (* Amiram Eldar, Jan 09 2021 *)

A276937 Numbers m with at least one prime factor prime(k) such that prime(k)^k is a divisor of m, but with no factor prime(j) such that prime(j)^(j+1) divides m.

Original entry on oeis.org

2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 38, 42, 45, 46, 50, 58, 62, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 99, 102, 106, 110, 114, 117, 118, 122, 125, 126, 130, 134, 138, 142, 146, 150, 153, 154, 158, 166, 170, 171, 174, 178, 182, 186, 190, 194, 198, 202, 206, 207, 210, 214, 218, 222, 225, 226, 230, 234, 238, 242, 246, 250
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Comments

Numbers m for which A276077(m) = 0 and A276935(m) > 0.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) - Product_{k>=1} (1 - 1/prime(k)^(k-1)) = 0.2803209124521781114031... . - Amiram Eldar, Sep 30 2023

Examples

			14 = 2*7 = prime(1)^1 * prime(4)^1 is a member as the first prime factor (2) satisfies the first condition, and neither prime factor violates the second condition.
36 = 4*9 = prime(1)^2 * prime(2)^2 is NOT a member because prime(1)^2 does not satisfy the second condition.
45 = 5*9 = prime(3)^1 * prime(2)^2 is a member as the latter prime factor satisfies the first condition, and neither prime factor violates the second condition.
		

Crossrefs

Intersection of A276078 and A276936.
Topmost row of A276941 (leftmost column in A276942).

Programs

  • Mathematica
    p[n_]:=FactorInteger[n][[All,1]];f[n_]:=PrimePi/@p[n];
    yQ[n_]:=Select[n/(Prime[f[n]]^f[n]),IntegerQ]!={};
    nQ[n_]:=Select[n/(Prime[f[n]]^(f[n]+1)),IntegerQ]=={};
    Select[Range[2,250],yQ[#]&&nQ[#]&] (* Ivan N. Ianakiev, Sep 28 2016 *)
  • PARI
    is(n) = {my(f = factor(n), c = 0, k); for (i=1, #f~, k = primepi(f[i, 1]); if(f[i, 2] > k, return(0), if( f[i, 2] == k, c++))); c > 0;} \\ Amiram Eldar, Sep 30 2023
Previous Showing 21-30 of 47 results. Next