cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A322307 Number of multisets in the swell of the n-th multiset multisystem.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2018

Keywords

Comments

First differs from A001221 at a(91) = 3, A001221(91) = 2.
The swell of a multiset partition is the set of possible joins of its connected submultisets, where the multiplicity of a vertex in the join of a set of multisets is the maximum multiplicity of the same vertex among the parts. For example the swell of {{1,1},{1,2},{2,2}} is:
{1,1}
{1,2}
{2,2}
{1,1,2}
{1,2,2}
{1,1,2,2}

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zwell[y_]:=Union[y,Join@@Cases[Subsets[Union[y],{2}],{x_,z_}?(GCD@@#>1&):>zwell[Sort[Append[Fold[DeleteCases[#1,#2,{1},1]&,y,{x,z}],LCM[x,z]]]]]];
    Table[Length[zwell[primeMS[n]]],{n,100}]

A328513 Connected squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 195
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

First differs from A318718 and A318719 in having 195 = prime(2) * prime(3) * prime(6).
A squarefree number with prime factorization prime(m_1) * ... * prime(m_k) is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.

Examples

			The sequence of all connected sets of multisets together with their MM-numbers (A302242) begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  29: {{1,3}}
  31: {{5}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
		

Crossrefs

A subset of A005117.
These are Heinz numbers of the partitions counted by A304714.
The maximum connected squarefree divisor of n is A327398(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[100],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]

Formula

Intersection of A005117 and A305078.

A305253 Number of connected factorizations of n into factors greater than 1 whose distinct factors are pairwise indivisible.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 28 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S whose distinct factors are pairwise indivisible and such that G(S) is a connected graph.

Examples

			The a(360) = 8 factorizations: (360), (4*90), (10*36), (12*30), (15*24), (18*20), (4*6*15), (6*6*10).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sacs[n_]:=Select[facs[n],Function[f,Length[zsm[f]]==1&&Select[Tuples[Union[f],2],UnsameQ@@#&&Divisible@@#&]=={}]]
    Table[Length[sacs[n]],{n,500}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305253aux(n, m, facs) = if(1==n, is_connected(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x==d)||(x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305253aux(n/d, d, newfacs))); (s));
    A305253(n) = if(1==n,0,A305253aux(n, n, List([]))); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A305193(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

Definition clarified by Gus Wiseman, more terms from Antti Karttunen, Dec 06 2018

A317785 Number of locally connected rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 42, 55, 67, 91, 109, 144, 177, 228, 281, 366, 448, 579, 720, 916, 1142
Offset: 1

Views

Author

Gus Wiseman, Aug 06 2018

Keywords

Comments

An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.

Examples

			The a(11) = 12 locally connected rooted trees:
  ((((((((((o))))))))))
  ((((((((o)(o))))))))
  (((((((o))((o)))))))
  ((((((o)))(((o))))))
  (((((o))))((((o)))))
  ((((((o)(o)(o))))))
  (((((o))((o)(o)))))
  ((((o))((o))((o))))
  ((((o)(o)(o)(o))))
  (((o))((o)(o)(o)))
  (((o)(o))((o)(o)))
  ((o)(o)(o)(o)(o))
		

Crossrefs

Programs

  • Mathematica
    multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,Length[csm[#]]==1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

A305501 Number of connected components of the integer partition y + 1 where y is the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A partition y is said to be connected if G(U(y + 1)) is a connected graph, where U(y + 1) is the set of distinct successors of the parts of y.
This is intended to be a cleaner form of A305079, where the treatment of empty multisets is arbitrary.

Examples

			The "prime index plus 1" multiset of 7410 is {2,3,4,7,9}, with connected components {{2,4},{3,9},{7}}, so a(7410) = 3.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[zsm[primeMS[n]+1]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
    A305501(n) = { my(cs = apply(p -> 1+primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s); }; \\ Antti Karttunen, Nov 09 2018

Extensions

More terms from Antti Karttunen, Nov 09 2018

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]

A286519 Binary representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 11, 101, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0

Views

Author

Robert Price, Jul 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 659; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Jul 22 2017: (Start)
G.f.: (1 - 10*x^2 + 110*x^3 - 100*x^4) / ((1 - x)*(1 - 10*x)).
a(n) = (10^(1+n) - 1) / 9 for n>2.
a(n) = 11*a(n-1) - 10*a(n-2) for n>4.
(End)

A286521 Decimal representation of the diagonal from the origin to the corner (or of the corner to the origin) of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 5, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Robert Price, Jul 22 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 659; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

Formula

Conjectures from Colin Barker, Jul 22 2017: (Start)
G.f.: (1 - 2*x^2 + 6*x^3 - 4*x^4) / ((1 - x)*(1 - 2*x)).
a(n) = 2^(1+n) - 1 for n>2.
a(n) = 3*a(n-1) - 2*a(n-2) for n>4.
(End)

A321271 Number of connected factorizations of n into positive integers > 1 with z-density -1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

These are z-trees (A303837, A305081, A305253, A321279) where we relax the requirement of pairwise indivisibility.
Given a finite multiset S of positive integers greater than 1, let G(S) be the simple labeled graph with vertices the distinct elements of S and with edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. Then S is said to be connected if G(S) is a connected graph.
The z-density of a factorization S is defined to be Sum_{s in S} (omega(s) - 1) - omega(n), where omega = A001221 and n is the product of S.

Examples

			The a(72) = 8 factorizations are (2*2*3*6), (2*2*18), (2*3*12), (2*36), (3*4*6), (3*24), (4*18), (72). Missing from this list but still connected are (2*6*6),(6*12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[Times@@s];
    Table[Length[Select[facs[n],And[zensity[#]==-1,Length[zsm[#]]==1]&]],{n,100}]

A322368 Heinz numbers of disconnected integer partitions.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

Differs from A289509 in having 1 and lacking 2, 195, 455, 555, 585...
Also positions of entries > 1 in A305079.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]
Previous Showing 21-30 of 39 results. Next