cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A329050 Square array A(n,k) = prime(n+1)^(2^k), read by descending antidiagonals (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...; Fermi-Dirac primes (A050376) in matrix form, sorted into rows by their prime divisor.

Original entry on oeis.org

2, 4, 3, 16, 9, 5, 256, 81, 25, 7, 65536, 6561, 625, 49, 11, 4294967296, 43046721, 390625, 2401, 121, 13, 18446744073709551616, 1853020188851841, 152587890625, 5764801, 14641, 169, 17, 340282366920938463463374607431768211456, 3433683820292512484657849089281, 23283064365386962890625, 33232930569601, 214358881, 28561, 289, 19
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, Nov 02 2019

Keywords

Comments

This sequence is a permutation of A050376, so every positive integer is the product of a unique subset, S_factors, of its terms. If we restrict S_factors to be chosen from a subset, S_0, consisting of numbers from specified rows and/or columns of this array, there are notable sequences among those that may be generated. See the examples. Other notable sequences can be generated if we restrict the intersection of S_factors with specific rows/columns to have even cardinality. In any of the foregoing cases, the numbers in the resulting sequence form a group under the binary operation A059897(.,.).
Shares with array A246278 the property that columns grow downward by iterating A003961, and indeed, this array can be obtained from A246278 by selecting its columns 1, 2, 8, 128, ..., 2^((2^k)-1), for k >= 0.
A(n,k) is the image of the lattice point with coordinates X=n and Y=k under the inverse of the bijection f defined in the first comment of A306697. This geometric relationship can be used to construct an isomorphism from the polynomial ring GF(2)[x,y] to a ring over the positive integers, using methods similar to those for constructing A297845 and A306697. See A329329, the ring's multiplicative operator, for details.

Examples

			The top left 5 X 5 corner of the array:
  n\k |   0     1       2           3                   4
  ----+-------------------------------------------------------
   0  |   2,    4,     16,        256,              65536, ...
   1  |   3,    9,     81,       6561,           43046721, ...
   2  |   5,   25,    625,     390625,       152587890625, ...
   3  |   7,   49,   2401,    5764801,     33232930569601, ...
   4  |  11,  121,  14641,  214358881,  45949729863572161, ...
Column 0 continues as a list of primes, column 1 as a list of their squares, column 2 as a list of their 4th powers, and so on.
Every nonnegative power of 2 (A000079) is a product of a unique subset of numbers from row 0; every squarefree number (A005117) is a product of a unique subset of numbers from column 0. Likewise other rows and columns generate the sets of numbers from sequences:
Row 1:                 A000244 Powers of 3.
Column 1:              A062503 Squares of squarefree numbers.
Row 2:                 A000351 Powers of 5.
Column 2:              A113849 4th powers of squarefree numbers.
Union of rows 0 and 1:     A003586 3-smooth numbers.
Union of columns 0 and 1:  A046100 Biquadratefree numbers.
Union of row 0 / column 0: A122132 Oddly squarefree numbers.
Row 0 excluding column 0:  A000302 Powers of 4.
Column 0 excluding row 0:  A056911 Squarefree odd numbers.
All rows except 0:         A005408 Odd numbers.
All columns except 0:      A000290\{0} Positive squares.
All rows except 1:         A001651 Numbers not divisible by 3.
All columns except 1:      A252895 (have odd number of square divisors).
If, instead of restrictions on choosing individual factors of the product, we restrict the product to be of an even number of terms from each row of the array, we get A262675. The equivalent restriction applied to columns gives us A268390; applied only to column 0, we get A028260 (product of an even number of primes).
		

Crossrefs

Transpose: A329049.
Permutation of A050376.
Rows 1-4: A001146, A011764, A176594, A165425 (after the two initial terms).
Antidiagonal products: A191555.
Subtable of A182944, A242378, A246278, A329332.
A000290, A003961, A225546 are used to express relationship between terms of this sequence.
Related binary operations: A059897, A306697, A329329.
See also the table in the example section.

Programs

  • Mathematica
    Table[Prime[#]^(2^k) &[m - k + 1], {m, 0, 7}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    up_to = 105;
    A329050sq(n,k) = (prime(1+n)^(2^k));
    A329050list(up_to) = { my(v = vector(up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A329050sq(col, a-col))); (v); };
    v329050 = A329050list(up_to);
    A329050(n) = v329050[1+n];
    for(n=0,up_to-1,print1(A329050(n),", ")); \\ Antti Karttunen, Nov 06 2019

Formula

A(0,k) = 2^(2^k), and for n > 0, A(n,k) = A003961(A(n-1,k)).
A(n,k) = A182944(n+1,2^k).
A(n,k) = A329332(2^n,2^k).
A(k,n) = A225546(A(n,k)).
A(n,k+1) = A000290(A(n,k)) = A(n,k)^2.

Extensions

Example annotated for clarity by Peter Munn, Feb 12 2020

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A329329 Multiplicative operator of a ring over the positive integers that has A059897(.,.) as additive operator and is isomorphic to GF(2)[x,y] with A329050(i,j) the image of x^i * y^j.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 10, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Peter Munn, Nov 11 2019

Keywords

Comments

Square array A(n,k), n >= 1, k >= 1, read by descending antidiagonals.
The group defined by the binary operation A059897(.,.) over the positive integers is commutative with all elements self-inverse, and isomorphic to the additive group of GF(2) polynomial rings such as GF(2)[x,y]. There is a unique isomorphism extending each bijective mapping between respective minimal generating sets. The lexicographically earliest minimal generating set for the A059897 group is A050376, often called the Fermi-Dirac primes. This set has a natural arrangement in a square array, given by A329050(i,j) = prime(i+1)^(2^j), i >= 0, j >= 0. The most meaningful generating set for the additive group of GF(2)[x,y] is {x^i * y^j: i >= 0, j >= 0}, which similarly forms a square array. All this makes A329050(i,j) especially appropriate to be the image (under an isomorphism) of the GF(2) polynomial x^i * y^j.
Using g to denote the intended isomorphism, we specify g(x^i * y^j) = A329050(i,j). This maps minimal generating sets of the additive groups, so the definition of g is completed by specifying g(a+b) = A059897(g(a), g(b)). We then calculate the image under g of polynomial multiplication in GF(2)[x,y], giving us this sequence as the matching multiplicative operator for an isomorphic ring over the positive integers. Using f to denote the inverse of g, A[n,k] = g(f(n) * f(k)).
See the formula section for an alternative definition based on the A329050 array, independent of GF(2)[x,y].
Closely related to A306697 and A297845. If A059897 is replaced in the alternative definition by A059896 (and the definition is supplemented by the derived identity for the absorbing element, shown in the formula section), we get A306697; if A059897 is similarly replaced by A003991 (integer multiplication), we get A297845. This sequence and A306697, considered as multiplicative operators, are carryless arithmetic equivalents of A297845. A306697 uses a method analogous to binary-OR when there would be a multiplicative carry, while this sequence uses a method analogous to binary exclusive-OR. In consequence A(n,k) <> A297845(n,k) exactly when A306697(n,k) <> A297845(n,k). This relationship is not symmetric between the 3 sequences: there are n and k such that A(n,k) = A306697(n,k) <> A297845(n,k). For example A(54,72) = A306697(54,72) = 273375000 <> A297845(54,72) = 22143375000.

Examples

			Square array A(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   10   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343    32   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441    22   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573    80
		

Crossrefs

A059897, A225546, A329050 are used to express relationship between terms of this sequence.
Related binary operations: A297845/A003991, A306697/A059896.

Programs

  • PARI
    \\ See Links section.

Formula

Alternative definition: (Start)
A(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
A(A059897(n,k), m) = A059897(A(n,m), A(k,m)).
A(m, A059897(n,k)) = A059897(A(m,n), A(m,k)).
(End)
Derived identities: (Start)
A(n,1) = A(1,n) = 1 (1 is an absorbing element).
A(n,2) = A(2,n) = n.
A(n,k) = A(k,n).
A(n, A(m,k)) = A(A(n,m), k).
(End)
A(A019565(i), 2^j) = A019565(i)^j = A329332(i,j).
A(A225546(i), A225546(j)) = A225546(A(i,j)).
A(n,k) = A306697(n,k) = A297845(n,k), for n = A050376(i), k = A050376(j).
A(n,k) <= A306697(n,k) <= A297845(n,k).
A(n,k) < A297845(n,k) if and only if A306697(n,k) < A297845(n,k).

A007188 Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i).

Original entry on oeis.org

2, 6, 90, 47250, 66852843750, 2806877704512541816406250, 1216935896582703898519354781702537118597533386230468750
Offset: 0

Views

Author

Keywords

Comments

n-th power of x+1 using the encoding of polynomials defined in A206284 and A297845. - Peter Munn, Jul 20 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Leftmost column of square array A066117.

Programs

  • Mathematica
    c[n_] := CoefficientList[(1 + x)^n, x]; f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}]; Table[f[n], {n, 1, 7}] (* Clark Kimberling, Feb 05 2012 *)

Formula

a(0) = 2; for n > 0, a(n) = A297845(a(n-1), 6). - Peter Munn, Jul 20 2022

A104244 Suppose m = Product_{i=1..k} p_i^e_i, where p_i is the i-th prime number and each e_i is a nonnegative integer. Then we can define P_m(x) = Sum_{i=1..k} e_i*x^(i-1). The sequence is the square array A(n,m) = P_m(n) read by descending antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 3, 1, 0, 2, 4, 2, 4, 1, 0, 1, 3, 9, 2, 5, 1, 0, 3, 8, 4, 16, 2, 6, 1, 0, 2, 3, 27, 5, 25, 2, 7, 1, 0, 2, 4, 3, 64, 6, 36, 2, 8, 1, 0, 1, 5, 6, 3, 125, 7, 49, 2, 9, 1, 0, 3, 16, 10, 8, 3, 216, 8, 64, 2, 10, 1, 0, 1, 4, 81, 17, 10, 3, 343, 9, 81, 2, 11, 1, 0, 2, 32, 5
Offset: 1

Views

Author

Olaf Voß, Feb 26 2005

Keywords

Comments

From Antti Karttunen, Jul 29 2015: (Start)
The square array A(row,col) is read by downwards antidiagonals as: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
A(n,m) (entry at row=n, column=m) gives the evaluation at x=n of the polynomial (with nonnegative integer coefficients) bijectively encoded in the prime factorization of m. See A206284, A206296 for the details of that encoding. (The roles of variables n and m were accidentally swapped in this description, corrected by Antti Karttunen, Oct 30 2016)
(End)
Each row is a completely additive sequence, row n mapping prime(m) to n^(m-1). - Peter Munn, Apr 22 2022

Examples

			a(13) = 3 because 3 = p_1^0 * p_2^1 * p_3^0 * ..., so P_3(x) = 0*x^(1-1) + 1*x^(2-1) + 0*x^(3-1) + ... = x. Hence a(13) = A(3,3) = P_3(3) = 3. [Elaborated by _Peter Munn_, Aug 13 2022]
The top left corner of the array:
0, 1,  1, 2,   1,  2,   1,  3,  2,   2,     1,  3,      1,    2,   2, 4
0, 1,  2, 2,   4,  3,   8,  3,  4,   5,    16,  4,     32,    9,   6, 4
0, 1,  3, 2,   9,  4,  27,  3,  6,  10,    81,  5,    243,   28,  12, 4
0, 1,  4, 2,  16,  5,  64,  3,  8,  17,   256,  6,   1024,   65,  20, 4
0, 1,  5, 2,  25,  6,  125, 3, 10,  26,   625,  7,   3125,  126,  30, 4
0, 1,  6, 2,  36,  7,  216, 3, 12,  37,  1296,  8,   7776,  217,  42, 4
0, 1,  7, 2,  49,  8,  343, 3, 14,  50,  2401,  9,  16807,  344,  56, 4
0, 1,  8, 2,  64,  9,  512, 3, 16,  65,  4096, 10,  32768,  513,  72, 4
0, 1,  9, 2,  81, 10,  729, 3, 18,  82,  6561, 11,  59049,  730,  90, 4
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4
...
		

Crossrefs

Cf. A000720.
Transpose: A104245.
Main diagonal: A090883.
Row 1: A001222, row 2: A048675, row 3: A090880, row 4: A090881, row 5: A090882, row 10: A054841; and, in the extrapolated table, row 0: A007814, row -1: A195017.
Other completely additive sequences with prime(k) mapped to a function of k include k: A056239, k-1: A318995, k+1: A318994, k^2: A289506, 2^k-1: A293447, k!: A276075, F(k-1): A265753, F(k-2): A265752.
For completely additive sequences with primes p mapped to a function of p, see A001414.
For completely additive sequences where some primes are mapped to 1, the rest to 0 (notably, some ruler functions) see the cross-references in A249344.
For completely additive sequences, s, with primes p mapped to a function of s(p-1) and maybe s(p+1), see A352957.
See the formula section for the relationship to A073133, A206296.
See the comments for the relevance of A206284.
A297845 represents multiplication of the relevant polynomials.
Cf. A090884, A248663, A265398, A265399 for other related sequences.
A167219 lists columns that contain their own column number.

Formula

A(n,A206296(k)) = A073133(n,k). [This formula demonstrates how this array can be used with appropriately encoded polynomials. Note that A073133 reads its antidiagonals by ascending order, while here the order is opposite.] - Antti Karttunen, Oct 30 2016
From Peter Munn, Apr 05 2021: (Start)
The sequence is defined by the following identities:
A(n, 3) = n;
A(n, m*k) = A(n, m) + A(n, k);
A(n, A297845(m, k)) = A(n, m) * A(n, k).
(End)

Extensions

Starting offset changed from 0 to 1 by Antti Karttunen, Jul 29 2015
Name edited (and aligned with rest of sequence) by Peter Munn, Apr 23 2022

A145784 Numbers with property that their number of prime factors counted with multiplicity is a multiple of 3.

Original entry on oeis.org

1, 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 64, 66, 68, 70, 75, 76, 78, 92, 96, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 144, 147, 148, 153, 154, 160, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 216, 222
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 19 2008

Keywords

Comments

A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 02 2024

Crossrefs

Cf. A001222, A010872, A373975 (characteristic function).
Cf. also A028260, A214195, A297845.

Programs

  • Haskell
    a145784 n = a145784_list !! (n-1)
    a145784_list = filter ((== 0) . a010872 . a001222) [1..]
    -- Reinhard Zumkeller, May 26 2012
    
  • Mathematica
    Join[{1}, Select[Range[2,230], Mod[Total[Transpose[FactorInteger[#]][[2]]], 3] == 0 &]] (* T. D. Noe, May 21 2012 *)
  • PARI
    isok(k) = !(bigomega(k) % 3); \\ Amiram Eldar, May 16 2025

Formula

A010872(A001222(a(n))) = 0.

A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

For any m > 0:
- let F(m) be the set of distinct Fermi-Dirac primes (A050376) with product m,
- for any i >=0 0 and j >= 0, let f(prime(i+1)^(2^i)) be the lattice point with coordinates X=i and Y=j (where prime(k) denotes the k-th prime number),
- f establishes a bijection from the Fermi-Dirac primes to the lattice points with nonnegative coordinates,
- let P(m) = { f(p) | p in F(m) },
- P establishes a bijection from the nonnegative integers to the set, say L, of finite sets of lattice points with nonnegative coordinates,
- let Q be the inverse of P,
- for any n > 0 and k > 0:
T(n, k) = Q(P(n) + P(k))
where "+" denotes the Minkowski addition on L.
This sequence has similarities with A297845, and their data sections almost match; T(6, 6) = 30, however A297845(6, 6) = 90.
This sequence has similarities with A067138; here we work on dimension 2, there in dimension 1.
This sequence as a binary operation distributes over A059896, whereas A297845 distributes over multiplication (A003991) and A329329 distributes over A059897. See the comment in A329329 for further description of the relationship between these sequences. - Peter Munn, Dec 19 2019

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   30   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343   128   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441   110   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573   720
		

Crossrefs

Columns (some differing for term 1) and equivalently rows: A003961(3), A000290(4), A045966(5), A045968(7), A045970(11).
Related binary operations: A067138, A059896, A297845/A003991, A329329/A059897.

Programs

  • PARI
    \\ See Links section.

Formula

For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(A019565(i), A019565(j)) = A019565(A067138(i, j)),
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A064547(T(n, k)) <= A064547(n) * A064547(k).
From Peter Munn, Dec 05 2019:(Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
T(A059896(i,j), k) = A059896(T(i,k), T(j,k)) (T distributes over A059896).
T(A019565(i), 2^j) = A019565(i)^j.
T(A225546(i), A225546(j)) = A225546(T(i,j)).
(End)

A066117 Triangle read by rows: T(n,k) = T(n-1,k-1)*T(n,k-1) and T(n,1) = prime(n).

Original entry on oeis.org

2, 3, 6, 5, 15, 90, 7, 35, 525, 47250, 11, 77, 2695, 1414875, 66852843750, 13, 143, 11011, 29674645, 41985913344375, 2806877704512541816406250, 17, 221, 31603, 347980633, 10326201751150285, 433555011900329243987584396875
Offset: 1

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Comments

As a square array read by descending antidiagonals, A(n, k), n >= 1, k >= 1, gives the encoding defined in A297845 of the polynomial (x+1)^(n-1) * x^(k-1). - Peter Munn, Jul 27 2022

Examples

			T(4,3) = T(3,2)*T(4,2) = 15*35 = 525. Rows start
     2;
    3, 6;
  5, 15, 90;
7, 35, 525, 47250;
...
From _Antti Karttunen_, Sep 18 2016: (Start)
Alternatively, this table can be viewed as a square array. Then the top left 5x4 corner looks as:
    2,       3,        5,         7,         11
    6,      15,       35,        77,        143
   90,     525,     2695,     11011,      31603
47250, 1414875, 29674645, 347980633, 2255916949
(End)
		

Crossrefs

Cf. A000040, A006094 and A066116 (three leftmost diagonal of triangular table = three topmost rows of square array).
Cf. A007188, A267096 (two rightmost diagonals of the triangular table = two leftmost columns of square array).
Cf. also A099884, A255483, A276586, A276588 (other arrays derived from this one).

Programs

Formula

From Antti Karttunen, Sep 19 2016: (Start)
When computed as a square array A(row,col), row >= 1, col >= 1:
A(1,col) = A000040(col), for row > 1, A(row,col) = A(row-1,col)*A(row-1,col+1).
A(row,1) = A007188(row-1), for col > 1, A(row,col) = A003961(A(row,col-1)).
For all row >= 1, col >= 1, A055396(A(row,col)) = col.
(End)
A(1,1) = 2; for n > 1, A(n,k) = A297845(A(n-1,k),6); for k > 1, A(n,k) = A297845(A(n,k-1),3). - Peter Munn, Jul 20 2022

A005145 n copies of n-th prime.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1

Views

Author

Keywords

Comments

Seen as a triangle read by rows: T(n,k) = A000040(n), 1 <= k <= n; row sums = A033286; central terms = A031368. - Reinhard Zumkeller, Aug 05 2009
Seen as a square array read by antidiagonals, a subtable of the binary operation multiplication tables A297845, A306697 and A329329. - Peter Munn, Jan 15 2020

Examples

			Triangle begins:
  2;
  3, 3;
  5, 5, 5;
  7, 7, 7, 7;
  ...
		

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.

Crossrefs

Sequences with similar definitions: A002024, A175944.
Cf. A000040 (range of values), A003961, A031368 (main diagonal), A033286 (row sums), A097906.
Subtable of A297845, A306697, A329329.

Programs

  • Haskell
    a005145 n k = a005145_tabl !! (n-1) !! (k-1)
    a005145_row n = a005145_tabl !! (n-1)
    a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list
    a005145_list = concat a005145_tabl
    -- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
    
  • Magma
    [NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
    
  • Mathematica
    Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *)
    Table[PadRight[{},n,Prime[n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
  • PARI
    a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
    
  • Python
    from sympy import primerange
    a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)]
    print(a) # Michael S. Branicky, Jul 13 2022
    
  • Python
    from math import isqrt
    from sympy import prime
    def A005145(n): return prime(isqrt(n<<3)+1>>1) # Chai Wah Wu, Jun 08 2025

Formula

From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
a(n) = A000040(A002024(n)). (End)
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)) = A329329(A(n,1), A(1,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022

A090884 a(n) is the derivative of n via transport of structure from polynomials. Completely multiplicative with a(2) = 1, a(prime(i+1)) = prime(i)^i for i > 0.

Original entry on oeis.org

1, 1, 2, 1, 9, 2, 125, 1, 4, 9, 2401, 2, 161051, 125, 18, 1, 4826809, 4, 410338673, 9, 250, 2401, 16983563041, 2, 81, 161051, 8, 125, 1801152661463, 18, 420707233300201, 1, 4802, 4826809, 1125, 4, 25408476896404831, 410338673, 322102, 9
Offset: 1

Views

Author

Sam Alexander, Dec 12 2003

Keywords

Comments

Previous name: There exists an isomorphism from the positive rationals under multiplication to Z[x] under addition, defined by f(q) = e1 + (e2)x + (e3)(x^2) +...+ (ek)(x^(k-1)) + ... (where e_i is the exponent of the i-th prime in q's prime factorization) The a(n) above are calculated by a(n) = f^(-1)[d/dx f(n)] (In other words: differentiate n's image in Z[x] and return to Q).
With primes noted p_0 = 2, p_1 = 3, etc., let f be the function that maps n = Product_{i=0..d} p_i^e_i to P = Sum_{i=0..d} e_i*X^i; and let g be the inverse function of f. a(n) is by definition g(P') = g((f(n))'). - Luc Rousseau, Aug 06 2018

Examples

			504 = 2^3 * 3^2 * 7 is mapped to polynomial 3+2X+X^3, whose derivative is 2+3X^2, which is mapped to 2^2 * 5^3 = 500. Then, a(504) = 500. - _Luc Rousseau_, Aug 06 2018
		

References

  • Joseph J. Rotman, The Theory of Groups: An Introduction, 2nd ed. Boston: Allyn and Bacon, Inc. 1973. Page 9, problem 1.26.

Crossrefs

Polynomial multiplication using the same isomorphism: A297845.

Programs

  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 1, precprime(p-1)^(e*primepi(p-1))))} \\ Andrew Howroyd, Jul 31 2018

Extensions

More terms from Ray Chandler, Dec 20 2003
New name from Peter Munn, Aug 10 2022 using existing formula (Andrew Howroyd, Jul 31 2018) and introductory comment.
Previous Showing 11-20 of 24 results. Next