cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A299107 Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = s_{A299100(n)}(4) = A001834(A299100(n)).

A298878 Union_{p prime, n >= 0} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

-2, -1, 0, 1, 2, 7, 14, 18, 23, 34, 47, 52, 62, 79, 98, 110, 119, 123, 142, 167, 194, 198, 223, 254, 287, 322, 359, 398, 439, 482, 488, 527, 574, 623, 674, 702, 724, 727, 782, 839, 843, 898, 959, 970, 1022, 1087, 1154, 1223, 1294, 1298, 1367, 1442, 1519, 1598
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].

Crossrefs

A269251 a(n) = smallest prime in the sequence s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n - 1 (or a(n) = -1 if no such prime exists).

Original entry on oeis.org

-1, -1, 2, 3, 19, 5, 41, 7, 71, 89, 109, 11, 2003, 13, 3121, 239, 271, 17, 729962708557509701, 19, 419, 461, 11593, 23, 599, 11356201, 701, 11546481261621528160662473705515857458665002781273993, 811, 29, 929
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

For n >= 2, smallest prime of the form (x^y + 1/x^y)/(x + 1/x), where x = (sqrt(n+2) +- sqrt(n-2))/2 and y is an odd positive integer, or -1 if no such prime exists.
If a(34) > 0 then a(34) > 10^1000. - Robert Israel, Feb 06 2018
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018
Values of n where a(n) might need more than 1000 digits: 34, 52, 123, 254, 275, 285, 322, 371, 401, 413, 437, 460, 508, 518, 535, 540, 629, 643, 653, 691, 723, 724, 753, 797, 837, 843, 876, 881, 898, 913, 960, 970, 981, 986, 987, ... - Jean-François Alcover, Mar 01 2018

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..31] do if n le 2 then Append(~lst, 0); else a:=1; c:=1; repeat b:=n*a-c; c:=a; a:=b; until IsPrime(a); Append(~lst, a); end if; end for; lst;
  • Maple
    f:= proc(n) local a,b,t;
    a:= 1; b:= n-1;
    do
      if isprime(b) then return b fi;
      t:= n*b-a;
      a:= b;
      b:= t;
    od
    end proc:
    f(1):= -1: f(2):= -1:
    map(f, [$1..33]); # Robert Israel, Feb 06 2018
  • Mathematica
    max = 10^1000; a[1] = a[2] = -1; a[n_] := Module[{s}, s[0] = 1; s[1] = n-1; s[k_] := s[k] = n s[k-1] - s[k-2]; For[k = 1, s[k] <= max, k++, If[PrimeQ[s[k]], Return[s[k]]]]] /. Null -> -1; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Mar 01 2018 *)

Formula

If n is prime then a(n+1) = n.

Extensions

Changed the value for the exceptional case from 0 to -1 for consistency with other sequences. - N. J. A. Sloane, Jan 19 2018

A269252 Define a sequence by s(k) = n*s(k-1) - s(k-2), with s(0) = 1, s(1) = n - 1. a(n) is the smallest index k such that s(k) is prime, or -1 if no such k exists.

Original entry on oeis.org

-1, -1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 14, 1, 2, 2, 3, 1, 2, 5, 2, 36, 2, 1, 2, 1, 15, -1, 6, 2, 3, 1, 2, 2, 6, 1, 3, 1, 2, 2, 2, 1, 2, 3, 2, -1, 3, 1, 2, 2, 2, 6, 3, 1, 2, 1, 30, 3, 2, 2, 2, 1, 2, 5, 2, 1, 5, 1, 6, 3, 2, 6, 3, 1, 8, 6, 14, 1, 3
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 09 2016

Keywords

Comments

For n >= 2, positive integer k yielding the smallest prime of the form (x^y + 1/x^y)/(x + 1/x), where x = (sqrt(n+2) +/- sqrt(n-2))/2 and y = 2*k + 1, or -1 if no such k exists.
Every positive term belongs to A005097.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Examples

			Let b(k) be the recursive sequence defined by the initial conditions b(0) = 1, b(1) = 10, and the recursive equation b(k) = 11*b(k-1) - b(k-2). a(11) = 2 because b(2) = 109 is the smallest prime in b(k).
Let c(k) be the recursive sequence defined by the initial conditions c(0) = 1, c(1) = 12, and the recursive equation c(k) = 13*c(k-1) - c(k-2). a(13) = 3 because c(3) = 2003 is the smallest prime in c(k).
		

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..85] do if n in [1, 2, 34, 52] then Append(~lst, -1); else a:=1; c:=1; t:=0; repeat b:=n*a-c; c:=a; a:=b; t+:=1; until IsPrime(a); Append(~lst, t); end if; end for; lst;
  • Mathematica
    s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Table[SelectFirst[Range[120], PrimeQ@ Abs@ s[#, -n] &] /. k_ /; MissingQ@ k -> -1, {n, 85}] (* Michael De Vlieger, Feb 03 2018 *)

Formula

If n is prime then a(n+1) = 1.

A343259 a(n) = 2 * T(n,n/2) where T(n,x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

2, 1, 2, 18, 194, 2525, 39202, 710647, 14760962, 345946302, 9034502498, 260219353691, 8195978831042, 280256592535933, 10340256951198914, 409468947059131650, 17322711762013765634, 779742677038695037937, 37210469265847998489922, 1876572071974094803391179
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2021

Keywords

Crossrefs

Main diagonal of A298675.

Programs

  • Mathematica
    Table[2*ChebyshevT[n, n/2], {n, 1, 20}] (* Amiram Eldar, Apr 09 2021 *)
  • PARI
    a(n) = 2*polchebyshev(n, 1, n/2);
    
  • PARI
    a(n) = round(2*cos(n*acos(n/2)));
    
  • PARI
    a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-2)^k*binomial(n+k, 2*k)/(n+k)));

Formula

a(n) = 2 * cos(n*arccos(n/2)).
a(n) = 2 * n * Sum_{k=0..n} (n-2)^k * binomial(n+k,2*k)/(n+k) for n > 0.
a(n) ~ n^n. - Vaclav Kotesovec, Apr 09 2021

A299741 Array read by antidiagonals upwards: a(i,0) = 2, i >= 0; a(i,1) = i+2, i >= 0; a(i,j) = (i+2) * a(i,j-1) - a(i,j-2), for i >= 0, j > 1.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 4, 7, 2, 2, 5, 14, 18, 2, 2, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 2, 8, 47, 198, 527, 724, 322, 2, 2, 9, 62, 322, 1154, 2525, 2702, 843, 2, 2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, 2, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2
Offset: 0

Views

Author

William W. Collier, Feb 18 2018

Keywords

Comments

Note the similarity in form of the recursive steps in the array definition above and the polynomial definition under FORMULA.

Examples

			i\j |0  1   2    3      4       5        6          7           8            9
----+-------------------------------------------------------------------------
   0|2  2   2    2      2       2        2          2           2            2
   1|2  3   7   18     47     123      322        843        2207         5778
   2|2  4  14   52    194     724     2702      10084       37634       140452
   3|2  5  23  110    527    2525    12098      57965      277727      1330670
   4|2  6  34  198   1154    6726    39202     228486     1331714      7761798
   5|2  7  47  322   2207   15127   103682     710647     4870847     33385282
   6|2  8  62  488   3842   30248   238142    1874888    14760962    116212808
   7|2  9  79  702   6239   55449   492802    4379769    38925119    345946302
   8|2 10  98  970   9602   95050   940898    9313930    92198402    912670090
   9|2 11 119 1298  14159  154451  1684802   18378371   200477279   2186871698
  10|2 12 142 1692  20162  240252  2862862   34114092   406506242   4843960812
  11|2 13 167 2158  27887  360373  4656962   60180133   777684767  10049721838
  12|2 14 194 2702  37634  524174  7300802  101687054  1416317954  19726764302
  13|2 15 223 3330  49727  742575 11088898  165590895  2472774527  36926027010
  14|2 16 254 4048  64514 1028176 16386302  261152656  4162056194  66331746448
  15|2 17 287 4862  82367 1395377 23639042  400468337  6784322687 114933017342
  16|2 18 322 5778 103682 1860498 33385282  599074578 10749957122 192900153618
  17|2 19 359 6802 128879 2441899 46267202  876634939 16609796639 314709501202
  18|2 20 398 7940 158402 3160100 63043598 1257711860 25091193602 500566160180
  19|2 21 439 9198 192719 4037901 84603202 1772629341 37140612959 778180242798
		

Crossrefs

The array first appeared in A298675.
Rows 1 through 29 of the array appear in these OEIS entries: A005248, A003500, A003501, A003499, A056854, A086903, A056918, A087799, A057076, A087800, A078363, A067902, A078365, A090727, A078367, A087215, A078369, A090728, A090729, A090730, A090731, A090732, A090733, A090247, A090248, A090249, A090251. Also entries occur for rows 45, 121, and 320: A087265, A065705, A089775. Each of these entries asserts that a(i,j)=f(i+2,j) is true for that row.
A few of the columns appear in the OEIS: A008865 (for column 2), A058794 and A007754 (for column 3), and A230586 (for column 5).
Main diagonal gives A343261.

Programs

  • Maple
    A:= proc(i, j) option remember; `if`(min(i, j)=0, 2,
          `if`(j=1, i+2, (i+2)*A(i, j-1)-A(i, j-2)))
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Mar 05 2019
  • Mathematica
    a[, 0] = a[0, ] = 2; a[i_, 1] := i + 2;
    a[i_, j_] := a[i, j] =(i + 2) a[i, j - 1] - a[i, j - 2];
    Table[a[i - j, j], {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

Let k be an integer, and let r1 and r2 be the roots of x + 1/x = k. Then f(k,n) = r1^n + r2^n is an integer, for integer n >= 0. Theorem: a(i,j) = f(i+2,j), for i,j >= 0. Proof: See the Collier link.
Define polynomials recursively by:
p[0](n) = 2, for n >= 0 ( [ and ] demark subscripts).
p[1](n) = n + 2, for n >= 0.
p[j](n) = p[j-1](n) * p[1](n) - p[j-2](n), for j > 1, n >= 0. The coefficients of these polynomials occur as the even numbered, upward diagonals in the OEIS Wiki link. Conjecture: a(i,j) = p[j](i), i,j >= 0.

Extensions

Edited by N. J. A. Sloane, Apr 04 2018

A377291 For each row n in array A374602(n, k), the asymptotic geometric growth factor of every A377290(n) terms, represented by its nearest integer.

Original entry on oeis.org

6, 14, 7, 98, 16, 34, 1442, 398, 194, 119, 30, 62, 4354, 1154, 115598, 322, 23, 155234, 48, 98, 10402, 2702, 64514, 727, 482, 3040, 1154, 2114, 70, 142, 21314, 5474, 2498, 1442, 16793602, 674, 48497294, 158402, 47, 48670, 96, 194, 39202, 9998, 1684802, 2599
Offset: 1

Views

Author

Charles L. Hohn, Oct 23 2024

Keywords

Comments

(a(n)^2-4)/A000037(n) is a square, and as such, a(n) is a member of row x of A298675(x, k), where x is the smallest value >= 3 such that (x^2-4)/A000037(n) is a square. E.g. for n=38: A000037(38)=44, x=20 ((20^2-4)/44 = 3^2), and a(38) = 158402 = A298675(20, 4).
The same row x of A298675(x, k) also results as integer solutions to g+(1/g) where g=(w*sqrt(d) + ceiling(w*sqrt(d)))/2 and d=A000037(n) for integers w >= 1. As such, it follows that g(n) can be expressed as a simple integer arithmetic transformation of sqrt(A000037(n)), e.g. g(1) = 2*sqrt(2)+3 (A156035), g(2) = 4*sqrt(3)+7 (A354129), g(3) = (3*sqrt(5)+7)/2 (A374883), g(4) = 20*sqrt(6)+49, and g(5) = 3*sqrt(7)+8 (A010516+8).

Examples

			For n = 5, the first few terms of A374602(5, k) are {4, 5, 11, 28, 62, 79, 175, 446, 988} and the period size is A377290(5) = 4, giving A374602(5, 1+4)/A374602(5, 1) = 62/4 = 15.5, 79/5 = 15.8, 175/11 = 15.909..., 446/28 = 15.928..., 988/62 = 15.935..., ..., to limit 15.937... -> g(5), from which g(5)+(1/g(5)) = 16 -> a(5).
		

Crossrefs

Formula

Growth factor g(n) = Lim_{k->oo}(A374602(n, k+A377290(n))/A374602(n, k)).
a(n) = round(g(n)) = ceiling(g(n)) = g(n)+(1/g(n)).
Inverse: g(n) = (sqrt(a(n)^2-4)+a(n))/2.
For d = A000037(n) and x in {1, 2, 4}, when d+x is a square (unless x==4 and d+x is even): a(n) = 4/x*d+2.
For d = A000037(n) and x in {-4, 1, 2, 4}, when n > 3 and d-x is a square (unless x==-4 and d-x is odd): a(n) = (4/abs(x))^2*d^2-16/x*d+2.

A304725 a(n) = n^4 + 8*n^3 + 20*n^2 + 16*n + 2.

Original entry on oeis.org

2, 47, 194, 527, 1154, 2207, 3842, 6239, 9602, 14159, 20162, 27887, 37634, 49727, 64514, 82367, 103682, 128879, 158402, 192719, 232322, 277727, 329474, 388127, 454274, 528527, 611522, 703919, 806402, 919679, 1044482, 1181567, 1331714, 1495727, 1674434, 1868687
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2018

Keywords

Crossrefs

Cf. A008865.
Fourth column of the array in A298675 (without -1).
Fifth column of the array in A299741.

Programs

  • Magma
    [n^4+8*n^3+20*n^2+16*n+2: n in [0..40]];
  • Mathematica
    Table[n^4 + 8 n^3 + 20 n^2 + 16 n + 2, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{2,47,194,527,1154},50] (* Harvey P. Dale, Jan 23 2025 *)

Formula

G.f.: (2 + 37*x - 21*x^2 + 7*x^3 - x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A008865(n+2)^2 - 2. Therefore, a(n) is a member of A008865.

A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.

Original entry on oeis.org

4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1

Views

Author

Charles L. Hohn, Dec 10 2024

Keywords

Comments

Also, integers w >= 1 for each row n >= 1 such that z+(1/z) is an integer, where x = A000037(n), y = w*sqrt(x), and z = (y+ceiling(y))/2.
All terms of row n are positive integer multiples of T(n, 1).
Limit_{k->oo} T(n, k+1)/T(n, k) = (sqrt(b^2-4)+b)/2 where b=T(n, 2)/T(n, 1).

Examples

			n=row index; x=nonsquare integer of index n (A000037(n)):
 n  x    T(n, k)
------+---------------------------------------------------------------------
 1  2 |  4,   24,   140,     816,      4756,       27720,        161564, ...
 2  3 |  2,    8,    30,     112,       418,        1560,          5822, ...
 3  5 |  1,    3,     8,      21,        55,         144,           377, ...
 4  6 |  4,   40,   396,    3920,     38804,      384120,       3802396, ...
 5  7 |  6,   96,  1530,   24384,    388614,     6193440,      98706426, ...
 6  8 |  2,   12,    70,     408,      2378,       13860,         80782, ...
 7 10 | 12,  456, 17316,  657552,  24969660,   948189528,   36006232404, ...
 8 11 |  6,  120,  2394,   47760,    952806,    19008360,     379214394, ...
 9 12 |  1,    4,    15,      56,       209,         780,          2911, ...
10 13 |  3,   33,   360,    3927,     42837,      467280,       5097243, ...
11 14 |  8,  240,  7192,  215520,   6458408,   193536720,    5799643192, ...
12 15 |  2,   16,   126,     992,      7810,       61488,        484094, ...
13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ...
14 18 |  8,  272,  9240,  313888,  10662952,   362226480,   12305037368, ...
...
		

Crossrefs

Programs

  • PARI
    row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)}
    for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))

Formula

For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
T(n, 2) = Sum_{i=0..oo}(T(n, 1)^(2-2*i) * x^((1-2*i)/2) * A002420(i) * A033999(i)).
If T(n, 1) is even, then T(n, 2) = T(n, 1)*A180495(n); if T(n, 1) is odd and x is even, then T(n, 2) = T(n, 1)*sqrt(A180495(n)+2); if T(n, 1) and x are both odd, then T(n, 2) is a factor of T(n, 1)*A180495(n).
For k >= 3, T(n, k) = T(n, k-1)*(T(n, 2)/T(n, 1)) - T(n, k-2) = T(n, 1)*A298675(T(n, 2)/T(n, 1), k-1) + T(n, k-2) = sqrt((A298675(T(n, 2)/T(n, 1), k)^2-4)/x).
Previous Showing 11-19 of 19 results.