cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 96 results. Next

A340601 Number of integer partitions of n of even rank.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.

Examples

			The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
  (1)  .  (3)    (22)  (5)      (42)    (7)        (44)      (9)
          (21)         (41)     (321)   (43)       (62)      (63)
          (111)        (311)    (2211)  (61)       (332)     (81)
                       (2111)           (322)      (521)     (333)
                       (11111)          (331)      (2222)    (522)
                                        (511)      (4211)    (531)
                                        (2221)     (32111)   (711)
                                        (4111)     (221111)  (4221)
                                        (31111)              (4311)
                                        (211111)             (6111)
                                        (1111111)            (32211)
                                                             (33111)
                                                             (51111)
                                                             (222111)
                                                             (411111)
                                                             (3111111)
                                                             (21111111)
                                                             (111111111)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The positive case is A101708 (A340605).
The Heinz numbers of these partitions are A340602.
The odd version is A340692 (A340603).
- Rank -
A047993 counts partitions of rank 0 (A106529).
A072233 counts partitions by sum and length.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 22 2021
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {if(N>=0 && M>=0,  p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
    A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
    A_q(50) \\ John Tyler Rascoe, Apr 15 2024

Formula

G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024

A338907 Semiprimes whose prime indices sum to an odd number.

Original entry on oeis.org

6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

All terms are squarefree (A005117).
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
The semiprimes in A300063; the semiprimes in A332820. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}      95: {3,8}     202: {1,26}
     14: {1,4}     106: {1,16}    209: {5,8}
     15: {2,3}     119: {4,7}     214: {1,28}
     26: {1,6}     122: {1,18}    215: {3,14}
     33: {2,5}     123: {2,13}    217: {4,11}
     35: {3,4}     141: {2,15}    219: {2,21}
     38: {1,8}     142: {1,20}    221: {6,7}
     51: {2,7}     143: {5,6}     226: {1,30}
     58: {1,10}    145: {3,10}    249: {2,23}
     65: {3,6}     158: {1,22}    262: {1,32}
     69: {2,9}     161: {4,9}     265: {3,16}
     74: {1,12}    177: {2,17}    278: {1,34}
     77: {4,5}     178: {1,24}    287: {4,13}
     86: {1,14}    185: {3,12}    291: {2,25}
     93: {2,11}    201: {2,19}    299: {6,9}
		

Crossrefs

A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
A339114/A339115 give the least/greatest semiprime of weight n.
Subsequence of A332820.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338907(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Complement of A338906 in A001358.

A004251 Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0

Views

Author

Keywords

Comments

In other words, a(n) is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.
In the article by A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, "Parallel enumeration of degree sequences of simple graphs II", in Table 4 on page 260 the values a(30) = 7898574056034638 and a(31) = 30873429530206738 are incorrect due to the incorrect Gz(30) = 5876236938019300 and Gz(31) = 22974847474172100. - Wang Kai, Jun 05 2016

Examples

			For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)  (0,0,0,0)
           (1,1)  (0,1,1)  (0,0,1,1)
                  (1,1,2)  (0,1,1,2)
                  (2,2,2)  (0,2,2,2)
                           (1,1,1,1)
                           (1,1,1,3)
                           (1,1,2,2)
                           (1,2,2,3)
                           (2,2,2,2)
                           (2,2,3,3)
                           (3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
		

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Counting the positive partitions by sum gives A000569, ranked by A320922.
The version with half-loops is A029889, with covering case A339843.
The covering case (no zeros) is A095268.
Covering simple graphs are ranked by A309356 and A320458.
Non-graphical partitions are counted by A339617 and ranked by A339618.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

G.f. = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 102*x^6 + 342*x^7 + 1213*x^8 + ...
a(n) ~ c * 4^n / n^(3/4) for some constant c > 0. Computational estimates suggest c ≈ 0.099094. - Tom Johnston, Jan 18 2023

Extensions

More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(20)-a(23) from Nathann Cohen, Jul 09 2011
a(24)-a(29) from Antal Iványi, Nov 15 2011
a(30) and a(31) corrected by Wang Kai, Jun 05 2016

A174725 a(n) = (A074206(n) + A008683(n))/2.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 10, 1, 2, 2, 4, 0, 6, 0, 8, 2, 2, 2, 13, 0, 2, 2, 10, 0, 6, 0, 4, 4, 2, 0, 24, 1, 4, 2, 4, 0, 10, 2, 10, 2, 2, 0, 22, 0, 2, 4, 16, 2, 6, 0, 4, 2, 6, 0, 38, 0, 2, 4, 4, 2
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

From Mats Granvik, May 25 2017: (Start)
A074206(n) = A002033(n-1) = a(n) + A174726(n).
A008683(n) = a(n) - A174726(n).
Let m = size of matrix a matrix T, and let T be defined as follows:
T(n,k) = if m = 1 then 1 else if mod(n, k) = 0 then if and(n = k, n = m) then 0 else 1 else if and(n = 1, k = m) then 1 else 0
a(n) is then the number of permutation matrices with a positive contribution in the determinant of matrix T. The determinant of T is equal to the Möbius function A008683, see Mathematica program below for how to compute the determinant.
A174726 is the number of permutation matrices with a negative contribution in the determinant of matrix T.
(End)
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an even number of factors > 1. The non-ordered case is A339846. For example, the a(n) factorizations for n = 12, 24, 30, 32, 36 are:
(2*6) (3*8) (5*6) (4*8) (4*9)
(3*4) (4*6) (6*5) (8*4) (6*6)
(4*3) (6*4) (10*3) (16*2) (9*4)
(6*2) (8*3) (15*2) (2*16) (12*3)
(12*2) (2*15) (2*2*2*4) (18*2)
(2*12) (3*10) (2*2*4*2) (2*18)
(2*2*2*3) (2*4*2*2) (3*12)
(2*2*3*2) (4*2*2*2) (2*2*3*3)
(2*3*2*2) (2*3*2*3)
(3*2*2*2) (2*3*3*2)
(3*2*2*3)
(3*2*3*2)
(3*3*2*2)
(End)

Crossrefs

The odd version is A174726.
The unordered version is A339846.
A001055 counts factorizations, with strict case A045778.
A058696 counts partitions of even numbers, ranked by A300061.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
Other cases of even length:
- A024430 counts set partitions of even length.
- A027187 counts partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A067661 counts strict partitions of even length.
- A332305 counts strict compositions of even length

Programs

  • Mathematica
    (* From Mats Granvik, May 25 2017: (Start) *)
    Clear[t, nn]; nn = 77; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Monitor[Table[Sum[If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], {k, 1, 77}], {n, 1, nn}], n]
    (* The Möbius function as a determinant *) Table[Det[Table[Table[If[m == 1, 1, If[Mod[n, k] == 0, If[And[n == k, n == m], 0, 1], If[And[n == 1, k == m], 1, 0]]], {k, 1, m}], {n, 1, m}]], {m, 1, 42}]
    (* (End) *)
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],EvenQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (Mobius transform of a(n)) + (Mobius transform of A174726). - Mats Granvik, Apr 04 2010
From Mats Granvik, May 25 2017: (Start)
This sequence is the Moebius transform of A074206.
a(n) = (A074206(n) + A008683(n))/2.
(End)
G.f. A(x) satisfies: A(x) = x + Sum_{i>=2} Sum_{j>=2} A(x^(i*j)). - Ilya Gutkovskiy, May 11 2019

Extensions

References to A002033(n-1) changed to A074206(n) by Antti Karttunen, Nov 23 2024

A339560 Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

Naturally, such a partition must have an even number of parts. Its multiplicities form a graphical partition (A000569, A320922), and vice versa.

Examples

			The a(3) = 1 through a(11) = 13 partitions (A = 10):
  (21)  (31)  (32)  (42)  (43)    (53)    (54)    (64)    (65)
              (41)  (51)  (52)    (62)    (63)    (73)    (74)
                          (61)    (71)    (72)    (82)    (83)
                          (3211)  (3221)  (81)    (91)    (92)
                                  (4211)  (3321)  (4321)  (A1)
                                          (4221)  (5221)  (4322)
                                          (4311)  (5311)  (4331)
                                          (5211)  (6211)  (4421)
                                                          (5321)
                                                          (5411)
                                                          (6221)
                                                          (6311)
                                                          (7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
  {{1,2},{1,3},{3,4}}
  {{1,3},{1,4},{2,3}},
so y is counted under a(14).
		

Crossrefs

A338916 allows equal pairs (x,x).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]

Formula

A027187(n) = a(n) + A339559(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339561 Products of distinct squarefree semiprimes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Dec 13 2020

Keywords

Comments

First differs from A320911 in lacking 36.
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the prime signature of n is graphical.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}        55: {3,5}         91: {4,6}
      6: {1,2}     57: {2,8}         93: {2,11}
     10: {1,3}     58: {1,10}        94: {1,15}
     14: {1,4}     60: {1,1,2,3}     95: {3,8}
     15: {2,3}     62: {1,11}       106: {1,16}
     21: {2,4}     65: {3,6}        111: {2,12}
     22: {1,5}     69: {2,9}        115: {3,9}
     26: {1,6}     74: {1,12}       118: {1,17}
     33: {2,5}     77: {4,5}        119: {4,7}
     34: {1,7}     82: {1,13}       122: {1,18}
     35: {3,4}     84: {1,1,2,4}    123: {2,13}
     38: {1,8}     85: {3,7}        126: {1,2,2,4}
     39: {2,6}     86: {1,14}       129: {2,14}
     46: {1,9}     87: {2,10}       132: {1,1,2,5}
     51: {2,7}     90: {1,2,2,3}    133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
  (6*10*15*77)
  (6*10*21*55)
  (6*10*33*35)
  (6*14*15*55)
  (6*15*22*35)
  (10*14*15*33)
  (10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
		

Crossrefs

A309356 is a kind of universal embedding.
A320894 is the complement in A028260.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A001358 lists semiprimes, with squarefree case A006881.
A005117 lists squarefree numbers.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561 [this sequence]).

Programs

  • Mathematica
    sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqs[#]!={}&]

Formula

A357854 Squarefree numbers with a divisor having the same sum of prime indices as their quotient.

Original entry on oeis.org

1, 30, 70, 154, 165, 210, 273, 286, 390, 442, 462, 561, 595, 646, 714, 741, 858, 874, 910, 1045, 1155, 1173, 1254, 1326, 1330, 1334, 1495, 1653, 1771, 1794, 1798, 1870, 1938, 2139, 2145, 2294, 2415, 2465, 2470, 2530, 2622, 2639, 2730, 2926, 2945, 2958, 3034
Offset: 1

Views

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
    30: {1,2,3}
    70: {1,3,4}
   154: {1,4,5}
   165: {2,3,5}
   210: {1,2,3,4}
   273: {2,4,6}
   286: {1,5,6}
   390: {1,2,3,6}
For example, 210 has factorization 14*15, and both factors have the same sum of prime indices 5, so 210 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A237258.
A subset of A319241, squarefree case of A300061.
Squarefree positions of nonzero terms in A357879.
This is the squarefree case of A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Select[Range[1000],SquareFreeQ[#]&&MemberQ[sumprix/@Divisors[#],sumprix[#]/2]&]

A338914 Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2020

Keywords

Comments

These are also integer partitions that can be partitioned into not necessarily distinct edges (pairs of distinct parts). For example, (3,3,2,2) can be partitioned as {{2,3},{2,3}}, so is counted under a(10), but (4,2,2,2) and (4,2,1,1,1,1) cannot be partitioned into edges. The multiplicities of such a partition form a multigraphical partition (A209816, A320924).

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
              (41)  (51)    (52)    (62)    (63)      (73)
                    (2211)  (61)    (71)    (72)      (82)
                            (3211)  (3221)  (81)      (91)
                                    (3311)  (3321)    (3322)
                                    (4211)  (4221)    (4321)
                                            (4311)    (4411)
                                            (5211)    (5221)
                                            (222111)  (5311)
                                                      (6211)
                                                      (322111)
		

Crossrefs

A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339560 is the strict case.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320656 counts factorizations into squarefree semiprimes.
A320921 counts connected graphical partitions, ranked by A320923.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]

Formula

A027187(n) = a(n) + A096373(n).

A339617 Number of non-graphical integer partitions of 2n.

Original entry on oeis.org

0, 1, 3, 6, 13, 25, 46, 81, 141, 234, 383, 615, 968, 1503, 2298, 3468, 5176, 7653, 11178, 16212, 23290, 33218, 46996, 66091, 92277, 128122, 176787, 242674, 331338, 450279, 608832, 819748, 1098907, 1467122, 1951020, 2584796, 3411998
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. See A209816 for multigraphical partitions, A000070 for non-multigraphical partitions. Graphical partitions are counted by A000569.
The following are equivalent characteristics for any positive integer n:
(1) the prime indices of n can be partitioned into distinct strict pairs (a set of edges);
(2) n can be factored into distinct squarefree semiprimes;
(3) the prime signature of n is graphical.

Examples

			The a(1) = 1 through a(4) = 13 partitions:
  (2)  (4)    (6)      (8)
       (2,2)  (3,3)    (4,4)
       (3,1)  (4,2)    (5,3)
              (5,1)    (6,2)
              (3,2,1)  (7,1)
              (4,1,1)  (3,3,2)
                       (4,2,2)
                       (4,3,1)
                       (5,2,1)
                       (6,1,1)
                       (3,3,1,1)
                       (4,2,1,1)
                       (5,1,1,1)
For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees:
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
		

Crossrefs

A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 [this sequence] counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

a(n) + A000569(n) = A000041(2*n).

A344296 Numbers with at least as many prime factors (counted with multiplicity) as half their sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 280, 288, 300, 320, 324, 336, 352
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of certain partitions counted by A025065, but different from palindromic partitions, which have Heinz numbers A265640.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            30: {1,2,3}
      2: {1}           32: {1,1,1,1,1}
      3: {2}           36: {1,1,2,2}
      4: {1,1}         40: {1,1,1,3}
      6: {1,2}         48: {1,1,1,1,2}
      8: {1,1,1}       54: {1,2,2,2}
      9: {2,2}         56: {1,1,1,4}
     10: {1,3}         60: {1,1,2,3}
     12: {1,1,2}       64: {1,1,1,1,1,1}
     16: {1,1,1,1}     72: {1,1,1,2,2}
     18: {1,2,2}       80: {1,1,1,1,3}
     20: {1,1,3}       81: {2,2,2,2}
     24: {1,1,1,2}     84: {1,1,2,4}
     27: {2,2,2}       88: {1,1,1,5}
     28: {1,1,4}       90: {1,2,2,3}
		

Crossrefs

The case with difference at least 1 is A322136.
The case of equality is A340387, counted by A000041 or A035363.
The opposite version is A344291, counted by A110618.
The conjugate version is A344414, with even-weight case A344416.
A025065 counts palindromic partitions, ranked by A265640.
A056239 adds up prime indices, row sums of A112798.
A300061 lists numbers whose sum of prime indices is even.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) <= 2*A001222(a(n)).
a(n) = A322136(n)/4.
Previous Showing 21-30 of 96 results. Next