cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 96 results. Next

A339559 Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of distinct parts, i.e., that are not the multiset union of any set of edges.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 14, 23, 27, 41, 47, 70, 84, 114, 141, 190, 225, 303, 370, 475, 578, 738, 890, 1131, 1368, 1698, 2058, 2549, 3048, 3759, 4505, 5495, 6574, 7966, 9483, 11450, 13606, 16307, 19351, 23116, 27297, 32470, 38293, 45346, 53342, 62939
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a non-graphical partition.

Examples

			The a(2) = 1 through a(10) = 14 partitions (empty column indicated by dot):
  11   .   22     2111   33       2221     44         3222       55
           1111          2211     4111     2222       6111       3322
                         3111     211111   3311       222111     3331
                         111111            5111       321111     4222
                                           221111     411111     4411
                                           311111     21111111   7111
                                           11111111              222211
                                                                 322111
                                                                 331111
                                                                 421111
                                                                 511111
                                                                 22111111
                                                                 31111111
                                                                 1111111111
For example, the partition y = (4,4,3,3,2,2,1,1,1,1) can be partitioned into a multiset of edges in just three ways:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
None of these are strict, so y is counted under a(22).
		

Crossrefs

A320894 ranks these partitions (using Heinz numbers).
A338915 allows equal pairs (x,x).
A339560 counts the complement in even-length partitions.
A339564 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&strs[Times@@Prime/@#]=={}&]],{n,0,15}]

Formula

A027187(n) = a(n) + A339560(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339658 Heinz numbers of loop-graphical partitions (of even numbers).

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 25, 27, 28, 30, 36, 40, 48, 63, 64, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 147, 160, 175, 189, 192, 196, 198, 208, 210, 220, 225, 243, 250, 252, 256, 264, 270, 280, 300, 324, 336, 343, 352, 360, 400, 432, 441, 448, 462, 468, 480
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320912.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms > 1 together with their prime indices begins:
      3: {2}               70: {1,3,4}          192: {1,1,1,1,1,1,2}
      4: {1,1}             75: {2,3,3}          196: {1,1,4,4}
      9: {2,2}             81: {2,2,2,2}        198: {1,2,2,5}
     10: {1,3}             84: {1,1,2,4}        208: {1,1,1,1,6}
     12: {1,1,2}           88: {1,1,1,5}        210: {1,2,3,4}
     16: {1,1,1,1}         90: {1,2,2,3}        220: {1,1,3,5}
     25: {3,3}            100: {1,1,3,3}        225: {2,2,3,3}
     27: {2,2,2}          108: {1,1,2,2,2}      243: {2,2,2,2,2}
     28: {1,1,4}          112: {1,1,1,1,4}      250: {1,3,3,3}
     30: {1,2,3}          120: {1,1,1,2,3}      252: {1,1,2,2,4}
     36: {1,1,2,2}        144: {1,1,1,1,2,2}    256: {1,1,1,1,1,1,1,1}
     40: {1,1,1,3}        147: {2,4,4}          264: {1,1,1,2,5}
     48: {1,1,1,1,2}      160: {1,1,1,1,1,3}    270: {1,2,2,2,3}
     63: {2,2,4}          175: {3,3,4}          280: {1,1,1,3,4}
     64: {1,1,1,1,1,1}    189: {2,2,2,4}        300: {1,1,2,3,3}
For example, the four loop-graphs with degrees y = (3,1,1,1) are:
  {{1,1},{1,2},{3,4}}
  {{1,1},{1,3},{2,4}}
  {{1,1},{1,4},{2,3}}
  {{1,2},{1,3},{1,4}},
so the Heinz number 40 is in the sequence. On the other hand, the three loop-multigraphs with degrees y = (4,4) are
  {{1,1},{1,1},{2,2},{2,2}}
  {{1,1},{1,2},{1,2},{2,2}}
  {{1,2},{1,2},{1,2},{1,2}},
but none of these is a loop-graph, so the Heinz number 49 is not in the sequence.
		

Crossrefs

A320912 has these prime shadows (see A181819).
A339656 counts these partitions.
A339657 ranks the complement, counted by A339655.
A001358 lists semiprimes, with squarefree case A006881.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A338914 can be partitioned into strict pairs (A320911).
- A338916 can be partitioned into distinct pairs (A320912).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[25],Select[mpsbin[nrmptn[#]],UnsameQ@@#&]!={}&]

Formula

A340602 Heinz numbers of integer partitions of even rank.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 47, 49, 50, 54, 56, 57, 58, 59, 65, 66, 67, 68, 73, 74, 75, 80, 81, 83, 84, 86, 87, 91, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111, 120, 122, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
     1: ()           31: (11)           58: (10,1)
     2: (1)          32: (1,1,1,1,1)    59: (17)
     5: (3)          35: (4,3)          65: (6,3)
     6: (2,1)        36: (2,2,1,1)      66: (5,2,1)
     8: (1,1,1)      38: (8,1)          67: (19)
     9: (2,2)        39: (6,2)          68: (7,1,1)
    11: (5)          41: (13)           73: (21)
    14: (4,1)        44: (5,1,1)        74: (12,1)
    17: (7)          45: (3,2,2)        75: (3,3,2)
    20: (3,1,1)      47: (15)           80: (3,1,1,1,1)
    21: (4,2)        49: (4,4)          81: (2,2,2,2)
    23: (9)          50: (3,3,1)        83: (23)
    24: (2,1,1,1)    54: (2,2,2,1)      84: (4,2,1,1)
    26: (6,1)        56: (4,1,1,1)      86: (14,1)
    30: (3,2,1)      57: (8,2)          87: (10,2)
		

Crossrefs

Taking only length gives A001222.
Taking only maximum part gives A061395.
These partitions are counted by A340601.
The complement is A340603.
The case of positive rank is A340605.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank = maximum minus minimum part (A324515).
A340653 counts factorizations of rank 0.
A340692 counts partitions of odd rank (A340603).
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    Select[Range[100],EvenQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]

Formula

Either n = 1 or A061395(n) - A001222(n) is even.

A339657 Heinz numbers of non-loop-graphical partitions of even numbers.

Original entry on oeis.org

7, 13, 19, 21, 22, 29, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 154, 155, 156, 159, 163, 165, 166, 169, 171
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320892.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656, with Heinz numbers A339658.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
      7: {4}         57: {2,8}      107: {28}
     13: {6}         61: {18}       111: {2,12}
     19: {8}         62: {1,11}     113: {30}
     21: {2,4}       66: {1,2,5}    115: {3,9}
     22: {1,5}       71: {20}       116: {1,1,10}
     29: {10}        76: {1,1,8}    117: {2,2,6}
     34: {1,7}       79: {22}       118: {1,17}
     37: {12}        82: {1,13}     121: {5,5}
     39: {2,6}       85: {3,7}      129: {2,14}
     43: {14}        87: {2,10}     130: {1,3,6}
     46: {1,9}       89: {24}       131: {32}
     49: {4,4}       91: {4,6}      133: {4,8}
     52: {1,1,6}     94: {1,15}     134: {1,19}
     53: {16}       101: {26}       136: {1,1,1,7}
     55: {3,5}      102: {1,2,7}    138: {1,2,9}
For example, the three loop-multigraphs with degrees y = (5,2,1) are:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence.
		

Crossrefs

A320892 has these prime shadows (see A181819).
A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}.
A339655 counts these partitions.
A339658 ranks the complement, counted by A339656.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339844 counts loop-graphical partitions by length.
factorizations of n into distinct primes or squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657 [this sequence]).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&]

Formula

A026010 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of integer compositions of n + 2 in which the even parts appear as often at even positions as at odd positions (confirmed up to n = 19). - Gus Wiseman, Mar 17 2018

Examples

			The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
    Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
    Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(2*n) = ((3*n + 1)/(2*n + 1))*C(2*n + 1, n)= A051924(1+n), n>=0, a(2*n-1) = a(2*n)/2 = A097613(1+n), n >= 1. - Herbert Kociemba, May 08 2004
a(n) = Sum_{k=0..n} binomial(floor((n+k)/2), floor(k/2)). - Paul Barry, Jul 15 2004
Inverse binomial transform of A005774: (1, 3, 9, 26, 75, 216, ...). - Gary W. Adamson, Oct 22 2007
Conjecture: (n+3)*a(n) - 2*a(n-1) + (-5*n-3)*a(n-2) + 2*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 20 2013
a(n) = (1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*Catalan((2*n + 1 - (-1)^n)/4), where Catalan is the Catalan number = A000108. - G. C. Greubel, Nov 08 2018

A338906 Semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 34, 39, 46, 49, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 121, 129, 133, 134, 146, 155, 159, 166, 169, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 289, 295, 298, 301, 303, 314, 321, 334, 335, 339
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}      87: {2,10}    183: {2,18}    274: {1,33}
      9: {2,2}      91: {4,6}     187: {5,7}     289: {7,7}
     10: {1,3}      94: {1,15}    194: {1,25}    295: {3,17}
     21: {2,4}     111: {2,12}    203: {4,10}    298: {1,35}
     22: {1,5}     115: {3,9}     205: {3,13}    301: {4,14}
     25: {3,3}     118: {1,17}    206: {1,27}    303: {2,26}
     34: {1,7}     121: {5,5}     213: {2,20}    314: {1,37}
     39: {2,6}     129: {2,14}    218: {1,29}    321: {2,28}
     46: {1,9}     133: {4,8}     235: {3,15}    334: {1,39}
     49: {4,4}     134: {1,19}    237: {2,22}    335: {3,19}
     55: {3,5}     146: {1,21}    247: {6,8}     339: {2,30}
     57: {2,8}     155: {3,11}    253: {5,9}     341: {5,11}
     62: {1,11}    159: {2,16}    254: {1,31}    358: {1,41}
     82: {1,13}    166: {1,23}    259: {4,12}    361: {8,8}
     85: {3,7}     169: {6,6}     267: {2,24}    365: {3,21}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A098350 has this as union of even-indexed antidiagonals.
A300061 looks at all numbers (not just semiprimes).
A338904 has this as union of even-indexed rows.
A338907 is the odd version.
A338908 is the squarefree case.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&EvenQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338906(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1),-1))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

A339620 Heinz numbers of non-multigraphical partitions of even numbers.

Original entry on oeis.org

3, 7, 10, 13, 19, 21, 22, 28, 29, 34, 37, 39, 43, 46, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 88, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 155, 156, 159, 163, 166, 171, 172, 173
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

An integer partition is non-multigraphical if it does not comprise the multiset of vertex-degrees of any multigraph (multiset of non-loop edges). Multigraphical partitions are counted by A209816, non-multigraphical partitions by A000070.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime indices of n can be partitioned into strict pairs (a multiset of edges);
(2) n can be factored into squarefree semiprimes;
(3) the unordered prime signature of n is multigraphical.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         53: {16}          94: {1,15}
      7: {4}         55: {3,5}        101: {26}
     10: {1,3}       57: {2,8}        102: {1,2,7}
     13: {6}         61: {18}         107: {28}
     19: {8}         62: {1,11}       111: {2,12}
     21: {2,4}       66: {1,2,5}      113: {30}
     22: {1,5}       71: {20}         115: {3,9}
     28: {1,1,4}     76: {1,1,8}      116: {1,1,10}
     29: {10}        79: {22}         117: {2,2,6}
     34: {1,7}       82: {1,13}       118: {1,17}
     37: {12}        85: {3,7}        129: {2,14}
     39: {2,6}       87: {2,10}       130: {1,3,6}
     43: {14}        88: {1,1,1,5}    131: {32}
     46: {1,9}       89: {24}         133: {4,8}
     52: {1,1,6}     91: {4,6}        134: {1,19}
For example, a complete lists of all loop-multigraphs with degrees (5,2,1) is:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a multigraph (they have loops), the Heinz number 66 belongs to the sequence.
		

Crossrefs

A000070 counts these partitions.
A300061 is a superset.
A320891 has image under A181819 equal to this set of terms.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620 [this sequence]).
- A209816 counts multigraphical partitions (A320924).
- A147878 counts connected multigraphical partitions (A320925).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Select[Subsets[Union[m],{2}],MemberQ[#,m[[1]]]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&&prpts[nrmptn[#]]=={}&]

Formula

Equals A300061 \ A320924.
For all n, both A181821(a(n)) and A304660(a(n)) belong to A320891.

A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 4, 9, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 2, 11, 15, 17, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.

Examples

			Triangle begins:
  1
  0 0 1
  0 0 0 1 1
  0 0 0 1 2 1 1
  0 0 0 0 2 3 2 1 1
  0 0 0 0 1 4 5 3 2 1 1
  0 0 0 0 1 4 7 7 5 3 2 1 1
For example, row n = 5 counts the following partitions:
  3322  22222  222211  2221111  22111111  211111111  1111111111
        32221  322111  3211111  31111111
        33211  331111  4111111
        42211  421111
               511111
		

Crossrefs

A000569 gives the row sums.
A004250 is the central column.
A005408 gives the row lengths.
A008284/A072233 is the version counting all partitions.
A259873 is the left half of the triangle.
A309356 is a universal embedding.
A027187 counts partitions of even length.
A339559 = partitions that cannot be partitioned into distinct strict pairs.
A339560 = partitions that can be partitioned into distinct strict pairs.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A147878 counts connected multigraphical partitions (A320925).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021
Previous Showing 41-50 of 96 results. Next