cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A055684 Number of different n-pointed stars.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 4, 1, 5, 2, 3, 3, 7, 2, 8, 3, 5, 4, 10, 3, 9, 5, 8, 5, 13, 3, 14, 7, 9, 7, 11, 5, 17, 8, 11, 7, 19, 5, 20, 9, 11, 10, 22, 7, 20, 9, 15, 11, 25, 8, 19, 11, 17, 13, 28, 7, 29, 14, 17, 15, 23, 9, 32, 15, 21, 11, 34, 11, 35, 17, 19, 17, 29, 11
Offset: 3

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

Does not count rotations or reflections.
This is also the distinct ways of writing a number as the sum of two positive integers greater than one that are coprimes. - Lei Zhou, Mar 19 2014
Equivalently, a(n) is the number of relatively prime 2-part partitions of n without 1's. The Heinz numbers of these partitions are the intersection of A001358 (pairs), A005408 (no 1's), and A000837 (relatively prime) or A302696 (pairwise coprime). - Gus Wiseman, Oct 28 2020

Examples

			The first star has five points and is unique. The next is the seven pointed star and it comes in two varieties.
From _Gus Wiseman_, Oct 28 2020: (Start)
The a(5) = 1 through a(17) = 7 irreducible pairs > 1 (shown as fractions, empty column indicated by dot):
  2/3  .  2/5  3/5  2/7  3/7  2/9  5/7  2/11  3/11  2/13  3/13  2/15
          3/4       4/5       3/8       3/10  5/9   4/11  5/11  3/14
                              4/7       4/9         7/8   7/9   4/13
                              5/6       5/8                     5/12
                                        6/7                     6/11
                                                                7/10
                                                                8/9
(End)
		

References

  • Mark A. Herkommer, "Number Theory, A Programmer's Guide," McGraw-Hill, New York, 1999, page 58.

Crossrefs

Cf. A023022.
Cf. A053669 smallest skip increment, A102302 skip increment of densest star polygon.
A055684*2 is the ordered version.
A082023 counts the complement (reducible pairs > 1).
A220377, A337563, and A338332 count triples instead of pairs.
A000837 counts relatively prime partitions, with strict case A078374.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 and A337485 count pairwise coprime partitions with no 1's.
A302698 counts relatively prime partitions with no 1's, with strict case A337452.
A327516 counts pairwise coprime partitions, with strict case A305713.
A337450 counts relatively prime compositions with no 1's, with strict case A337451.

Programs

  • Maple
    with(numtheory): A055684 := n->(phi(n)-2)/2; seq(A055684(n), n=3..100);
  • Mathematica
    Table[(EulerPhi[n]-2)/2, {n, 3, 50}]
    Table[Length[Select[IntegerPartitions[n,{2}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 28 2020 *)

Formula

a(n) = A023022(n) - 1.
a(n) + A082023(n) = A140106(n). - Gus Wiseman, Oct 28 2020

A304709 Number of integer partitions of n whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.

Examples

			The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]//Length,{n,20}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i,n)>1, 2^(n-i)))));
      my(c(n, m, b)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
      my(a(n)=c(n, n, 0) + 1 - numdiv(n));
      for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A304712(n) + 1 - A000005(n). - Andrew Howroyd, Nov 02 2019

A337563 Number of pairwise coprime unordered triples of positive integers > 1 summing to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 7, 1, 7, 3, 9, 2, 15, 3, 13, 5, 17, 4, 29, 5, 20, 8, 28, 8, 42, 8, 31, 14, 42, 10, 59, 12, 45, 21, 52, 14, 77, 17, 68, 26, 69, 19, 101, 26, 84, 34, 86, 25, 138, 28, 95, 43, 111, 36, 161, 35, 118, 52, 151
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such partitions are necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (triples), and A302696 (coprime).

Examples

			The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19):
  532  .  543  .  743  753  754  .  765  B53  875  975  985  B75  987
          732     752       853     873       974  B73  B65  D73  B76
                            952     954       A73  D53  B74       B85
                            B32     972       B54       B83       B94
                                    B43       B72       B92       BA3
                                    B52       D43       D54       C75
                                    D32       D52       D72       D65
                                                        E53       D74
                                                        H32       D83
                                                                  D92
                                                                  F72
                                                                  G53
                                                                  H43
                                                                  H52
                                                                  J32
		

Crossrefs

A055684 is the version for pairs.
A220377 allows 1's, with non-strict version A307719.
A337485 counts these partitions of any length.
A337563*6 is the ordered version.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 counts pairwise coprime partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A302696 ranks pairwise coprime partitions.
A302698 counts relatively prime partitions with no 1's.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A337452 counts relatively prime strict partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

A302697 Odd numbers whose prime indices are relatively prime. Heinz numbers of integer partitions with no 1's and with relatively prime parts.

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 309, 315, 323, 327, 329
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of integer partitions with no 1's and with relatively prime parts begins:
015: (3,2)
033: (5,2)
035: (4,3)
045: (3,2,2)
051: (7,2)
055: (5,3)
069: (9,2)
075: (3,3,2)
077: (5,4)
085: (7,3)
093: (11,2)
095: (8,3)
099: (5,2,2)
105: (4,3,2)
119: (7,4)
123: (13,2)
135: (3,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,200,2],GCD@@primeMS[#]===1&]

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A332004 Number of compositions (ordered partitions) of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 12, 16, 24, 52, 64, 88, 132, 180, 344, 416, 616, 816, 1176, 1496, 2736, 3232, 4756, 6176, 8756, 11172, 15576, 24120, 30460, 41456, 55740, 74440, 97976, 130192, 168408, 256464, 315972, 429888, 558192, 749920, 958264, 1274928, 1621272, 2120288, 3020256
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Comments

Moebius transform of A032020.
Ranking these compositions using standard compositions (A066099) gives the intersection of A233564 (strict) with A291166 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			a(6) = 8 because we have [5, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(8) = 16 compositions (empty column indicated by dot):
  (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
          (2,1)  (3,1)  (2,3)  (5,1)    (2,5)    (3,5)
                        (3,2)  (1,2,3)  (3,4)    (5,3)
                        (4,1)  (1,3,2)  (4,3)    (7,1)
                               (2,1,3)  (5,2)    (1,2,5)
                               (2,3,1)  (6,1)    (1,3,4)
                               (3,1,2)  (1,2,4)  (1,4,3)
                               (3,2,1)  (1,4,2)  (1,5,2)
                                        (2,1,4)  (2,1,5)
                                        (2,4,1)  (2,5,1)
                                        (4,1,2)  (3,1,4)
                                        (4,2,1)  (3,4,1)
                                                 (4,1,3)
                                                 (4,3,1)
                                                 (5,1,2)
                                                 (5,2,1)
(End)
		

Crossrefs

A000740 is the non-strict version.
A078374 is the unordered version (non-strict: A000837).
A101271*6 counts these compositions of length 3 (non-strict: A000741).
A337561/A337562 is the pairwise coprime instead of relatively prime version (non-strict: A337462/A101268).
A289509 gives the Heinz numbers of relatively prime partitions.
A333227/A335235 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&GCD@@#<=1&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)

A304712 Number of integer partitions of n whose parts are all equal or whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 43, 54, 70, 86, 105, 130, 162, 196, 240, 286, 339, 405, 485, 573, 674, 790, 922, 1072, 1252, 1456, 1685, 1939, 2226, 2557, 2923, 3349, 3822, 4347, 4931, 5593, 6335, 7170, 8092, 9105, 10233, 11495, 12903, 14458, 16169, 18063
Offset: 0

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1.

Examples

			The a(6) = 10 partitions whose parts are all equal or whose distinct parts are pairwise coprime are (6), (51), (411), (33), (321), (3111), (222), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i, s) `if`(n=0, 1, `if`(i<1, 0,
          b(n, i, select(x-> x<=i, s))))
        end:
    b:= proc(n, i, s) option remember; g(n, i-1, s)+(f->
         `if`(f intersect s={}, add(g(n-i*j, i-1, s union f)
            , j=1..n/i), 0))(numtheory[factorset](i))
        end:
    a:= n-> g(n$2, {}):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Table[Select[IntegerPartitions[n],Or[SameQ@@#,CoprimeQ@@Union[#]]&]//Length,{n,20}]
    (* Second program: *)
    g[n_, i_, s_] := If[n == 0, 1, If[i < 1, 0, b[n, i, Select[s, # <= i &]]]];
    b[n_, i_, s_] := b[n, i, s] = g[n, i - 1, s] + Function[f,
         If[f ~Intersection~ s == {}, Sum[g[n - i*j, i - 1, s ~Union~ f],
         {j, 1, n/i}], 0]][FactorInteger[i][[All, 1]]];
    a[n_] := g[n, n, {}];
    a /@ Range[0, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A337452 Number of relatively prime strict integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 6, 3, 9, 7, 11, 11, 20, 15, 28, 24, 35, 36, 55, 47, 73, 71, 95, 96, 136, 123, 180, 177, 226, 235, 305, 299, 403, 406, 503, 523, 668, 662, 852, 873, 1052, 1115, 1370, 1391, 1720, 1784, 2125, 2252, 2701, 2786, 3348, 3520, 4116
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Examples

			The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13):
  32  43  53  54   73   65   75   76   95    87    97
      52      72   532  74   543  85   B3    B4    B5
              432       83   732  94   653   D2    D3
                        92        A3   743   654   754
                        542       B2   752   753   763
                        632       643  932   762   853
                                  652  5432  843   943
                                  742        852   952
                                  832        942   B32
                                             A32   6532
                                             6432  7432
		

Crossrefs

A078374 is the version allowing 1's.
A302698 is the non-strict version.
A332004 is the ordered version allowing 1's.
A337450 is the ordered non-strict version.
A337451 is the ordered version.
A337485 is the pairwise coprime version.
A000837 counts relatively prime partitions.
A078374 counts relatively prime strict partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337561 counts pairwise coprime strict compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337450 Number of relatively prime compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 7, 5, 17, 17, 54, 51, 143, 168, 358, 482, 986, 1313, 2583, 3663, 6698, 9921, 17710, 26489, 46352, 70928, 121137, 188220, 317810, 497322, 832039, 1313501, 2177282, 3459041, 5702808, 9094377, 14930351, 23895672, 39084070, 62721578
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 17 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)    (3,5)    (2,7)      (3,7)
  (3,2)     (3,4)    (5,3)    (4,5)      (7,3)
            (4,3)    (2,3,3)  (5,4)      (2,3,5)
            (5,2)    (3,2,3)  (7,2)      (2,5,3)
            (2,2,3)  (3,3,2)  (2,2,5)    (3,2,5)
            (2,3,2)           (2,3,4)    (3,3,4)
            (3,2,2)           (2,4,3)    (3,4,3)
                              (2,5,2)    (3,5,2)
                              (3,2,4)    (4,3,3)
                              (3,4,2)    (5,2,3)
                              (4,2,3)    (5,3,2)
                              (4,3,2)    (2,2,3,3)
                              (5,2,2)    (2,3,2,3)
                              (2,2,2,3)  (2,3,3,2)
                              (2,2,3,2)  (3,2,2,3)
                              (2,3,2,2)  (3,2,3,2)
                              (3,2,2,2)  (3,3,2,2)
		

Crossrefs

A000740 is the version allowing 1's.
2*A055684(n) is the case of length 2.
A302697 ranks the unordered case.
A302698 is the unordered version.
A337451 is the strict version.
A337452 is the unordered strict version.
A000837 counts relatively prime partitions.
A002865 counts partitions with no 1's.
A101268 counts singleton or pairwise coprime compositions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0,
         `if`(g=1, 1, 0), add(b(n-j, igcd(g, j)), j=2..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337451 Number of relatively prime strict compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)    (3,7)
  (3,2)     (3,4)  (5,3)  (4,5)    (7,3)
            (4,3)         (5,4)    (2,3,5)
            (5,2)         (7,2)    (2,5,3)
                          (2,3,4)  (3,2,5)
                          (2,4,3)  (3,5,2)
                          (3,2,4)  (5,2,3)
                          (3,4,2)  (5,3,2)
                          (4,2,3)
                          (4,3,2)
		

Crossrefs

A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A337450 is the non-strict version.
A337452 is the unordered version.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]
Previous Showing 11-20 of 34 results. Next