cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A305611 Number of distinct positive subset-sums of the multiset of prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 6, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 9, 1, 3, 5, 6, 3, 7, 1, 5, 3, 6, 1, 10, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 10, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Comments

An integer n is a positive subset-sum of a multiset y if there exists a nonempty submultiset of y with sum n.
One less than the number of distinct values obtained when A001414 is applied to all divisors of n. - Antti Karttunen, Jun 13 2018

Examples

			The a(12) = 5 positive subset-sums of {2, 2, 3} are 2, 3, 4, 5, and 7.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Union[Total/@Rest[Subsets[Join@@Cases[FactorInteger[n],{p_,k_}:>Table[p,{k}]]]]]],{n,100}]
  • PARI
    up_to = 65537;
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
    v001414 = vector(up_to,n,A001414(n));
    A305611(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s = v001414[d]), mapput(m,s,s); k++)); (k-1); }; \\ Antti Karttunen, Jun 13 2018
    
  • Python
    from sympy import factorint
    from sympy.utilities.iterables import multiset_combinations
    def A305611(n):
        fs = factorint(n)
        return len(set(sum(d) for i in range(1,sum(fs.values())+1) for d in multiset_combinations(fs,i))) # Chai Wah Wu, Aug 23 2021

A335549 Number of normal patterns matched by the multiset of prime indices of n in weakly increasing order.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

First differs from A181796 at a(90) = 8 A181796(90) = 7.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a (normal) pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The Heinz number of (1,2,2,3) is 90 and it matches 8 patterns: (), (1), (11), (12), (112), (122), (123), (1223); so a(90) = 8.
		

Crossrefs

The version for standard compositions instead of prime indices is A335454.
Permutations of prime indices are counted by A008480.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Subset-sums are counted by A304792 and ranked by A299701.
Patterns matched by compositions of n are counted by A335456(n).
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mstype[q_]:=q/.Table[Union[q][[i]]->i,{i,Length[Union[q]]}];
    Table[Length[Union[mstype/@Subsets[primeMS[n]]]],{n,100}]

A366739 Number of distinct semi-sums of the multiset of prime indices of n. Number of distinct sums of prime indices of semiprime divisors of n (counted by A086971).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 2, 1, 1, 3, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 04 2023

Keywords

Comments

First differs from A086971 at a(90) = 3, A086971(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The prime indices of 90 are {1,2,2,3}, with semi-sums
  3 = 1+2
  4 = 1+3 (or 2+2)
  5 = 2+3
so a(90) = 3.
Alternatively, the semiprime divisors of 90 are (6,9,10,15), with prime indices ({1,2},{2,2},{1,3},{2,3}) with sums (3,4,4,5) so a(90) = 3.
		

Crossrefs

The non-binary version is A299701.
Summing over partitions gives A366738, strict A366741.
For all sums of pairs of elements we have A367095.
Positions of first appearances are A367097.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299702 ranks knapsack partitions, counted by A108917.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,100}]
  • PARI
    A366739(n) = #Set(apply(d->((f)->sum(i=1,#f~,f[i,2]*primepi(f[i,1])))(factor(d)), select(d->2==bigomega(d), divisors(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) <= A086971(n). - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
Is column k = n - 7 given by A325695?

Examples

			Triangle begins:
  1
  1  0
  0  1  0
  1  0  1  0
  0  1  0  1  0
  0  0  2  0  1  0
  1  0  0  2  0  1  0
  1  0  0  0  3  0  1  0
  0  1  1  0  0  3  0  1  0
  0  0  3  0  0  0  4  0  1  0
  1  0  0  2  2  0  0  4  0  1  0
  1  0  0  0  5  0  0  0  5  0  1  0
  2  0  0  0  0  5  2  0  0  5  0  1  0
  2  0  1  0  0  0  8  0  0  0  6  0  1  0
  1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
  2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
  1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
  2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
  3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
Row n = 12: counts the following partitions:
  (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
  (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
                         (7,4,1)                 (9,3)
                         (7,3,2)                 (8,4)
                         (5,4,3)                 (7,5)
		

Crossrefs

Row sums are A000009, non-strict A000041.
The complement (positive subset-sums) is also A365545 with rows reversed.
Weighted row sums are A365922, non-strict A365918.
The non-strict version is A365923, complement A365658, rank stat A325799.
A046663 counts partitions without a subset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]

A365922 Number of non-subset-sums of strict integer partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 8, 11, 18, 25, 38, 51, 70, 93, 122, 159, 206, 263, 328, 420, 514, 645, 776, 967, 1154, 1413, 1686, 2042, 2414, 2890, 3394, 4062, 4732, 5598, 6494, 7652, 8836, 10329, 11884, 13833, 15830, 18376, 20936, 24131, 27476, 31547, 35780, 40966, 46292, 52737
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The a(6) = 11 ways, showing each strict partition and its non-subset-sums:
    (6): 1,2,3,4,5
   (51): 2,3,4
   (42): 1,3,5
  (321):
		

Crossrefs

The complement (positive subset-sums) is A284640, non-strict A276024.
Weighted row sums of A365545, non-strict A365923.
Row sums of A365663, non-strict A046663.
The non-strict version is A365918.
The zero-full complement (subset-sums) is A365925, non-strict A304792.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k.
A365661 counts strict partitions w/ a subset summing to k.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Complement[Range[n], Total/@Subsets[#]]]& /@ Select[IntegerPartitions[n], UnsameQ@@#&]],{n,30}]

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

Original entry on oeis.org

1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.

Examples

			The a(0) = 1 through a(7) = 14 pairs:
  ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
              (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
                                (5)(32)   (6)(42)   (61)(7)
                                (5)(41)   (6)(51)   (7)(43)
                                (32)(41)  (321)(6)  (7)(52)
                                (41)(32)  (42)(51)  (7)(61)
                                          (51)(42)  (421)(7)
                                          (6)(321)  (43)(52)
                                                    (43)(61)
                                                    (52)(43)
                                                    (52)(61)
                                                    (61)(43)
                                                    (61)(52)
                                                    (7)(421)
		

Crossrefs

For subsets instead of partitions we have A000244, non-disjoint A000302.
If the partitions can have different sums we get A032302.
The non-strict version is A054440, non-disjoint A001255.
The unordered version is A108796, non-strict A260669.
A000041 counts integer partitions, strict A000009.
A000124 counts distinct possible sums of subsets of {1..n}.
A000712 counts distinct submultisets of partitions.
A002219 and A237258 count partitions of 2n including a partition of n.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
    Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)

Formula

a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025

A367093 Least positive integer with n more semiprime divisors than semi-sums of prime indices.

Original entry on oeis.org

1, 90, 630, 2310, 6930, 34650, 30030, 90090, 450450, 570570, 510510, 1531530, 7657650, 14804790, 11741730, 9699690, 29099070, 145495350
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
Are all primorials after 210 included?

Examples

			The terms together with their prime indices begin:
       1: {}
      90: {1,2,2,3}
     630: {1,2,2,3,4}
    2310: {1,2,3,4,5}
    6930: {1,2,2,3,4,5}
   34650: {1,2,2,3,3,4,5}
   30030: {1,2,3,4,5,6}
   90090: {1,2,2,3,4,5,6}
  450450: {1,2,2,3,3,4,5,6}
  570570: {1,2,3,4,5,6,8}
  510510: {1,2,3,4,5,6,7}
		

Crossrefs

The first part (semiprime divisors) is A086971, firsts A220264.
The second part (semi-sums of prime indices) is A366739, firsts A367097.
All sums of pairs of prime indices are counted by A367095.
The non-binary version is A367105.
A001222 counts prime factors (or prime indices), distinct A001221.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A056239 adds up prime indices, row sums of A112798.
A299701 counts subset-sums of prime indices, positive A304793.
Semiprime divisors are listed by A367096 and have:
- square count: A056170
- sum: A076290
- squarefree count: A079275
- count: A086971
- firsts: A220264

Programs

  • Mathematica
    nn=10000;
    w=Table[Length[Union[Subsets[prix[n],{2}]]]-Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
  • Python
    from itertools import count
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A367093(n):
        for k in count(1):
            c, a = 0, set()
            for s in (sum(p) for p in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)):
                if s not in a:
                    a.add(s)
                else:
                    c += 1
                if c > n:
                    break
            if c == n:
                return k # Chai Wah Wu, Nov 13 2023

Formula

a(n) is the least positive integer such that A086971(a(n)) - A366739(a(n)) = n.

Extensions

a(12)-a(16) from Chai Wah Wu, Nov 13 2023
a(17) from Chai Wah Wu, Nov 18 2023

A367404 Triangle read by rows where T(n,k) is the number of integer partitions of n with a semi-sum k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 2, 5, 3, 4, 2, 3, 7, 5, 6, 4, 3, 3, 11, 7, 9, 6, 6, 3, 4, 15, 11, 13, 10, 9, 6, 4, 4, 22, 15, 20, 13, 15, 9, 8, 4, 5, 30, 22, 27, 21, 21, 15, 12, 8, 5, 5, 42, 30, 39, 28, 30, 21, 20, 12, 10, 5, 6, 56, 42, 53, 41, 42, 33, 28, 20, 15, 10, 6, 6
Offset: 2

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (3,2,1,1) has semi-sum 3 = 2+1, but no semi-sum 6, so y is counted under T(7,3) but not under T(7,6).
Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   2
   5   3   4   2   3
   7   5   6   4   3   3
  11   7   9   6   6   3   4
  15  11  13  10   9   6   4   4
  22  15  20  13  15   9   8   4   5
  30  22  27  21  21  15  12   8   5   5
  42  30  39  28  30  21  20  12  10   5   6
  56  42  53  41  42  33  28  20  15  10   6   6
  77  56  73  55  60  42  44  28  25  15  12   6   7
Row n = 7 counts the following partitions:
  (511)      (421)     (331)    (421)   (511)  (61)
  (4111)     (3211)    (322)    (4111)  (421)  (52)
  (3211)     (2221)    (3211)   (322)   (331)  (43)
  (31111)    (22111)   (31111)  (3211)
  (22111)    (211111)  (2221)
  (211111)             (22111)
  (1111111)
		

Crossrefs

Column k = 0 is A000041.
Column n = k is A004526.
The complement for all submultisets is A046663, strict A365663.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365543, strict A365661.
Row sums are A366738.
The strict case is A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#, {2}],k]&]], {n,2,10}, {k,2,n}]

A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 4, 2, 2, 3, 2, 3, 3, 3, 3, 5, 3, 2, 4, 3, 4, 4, 5, 3, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5, 4, 4, 6, 4, 3, 6, 5, 6, 5, 7, 5, 7, 4, 5, 6, 5, 5, 7, 7, 8, 7, 8, 8, 7, 7, 5, 5, 7
Offset: 3

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  1  1  1  2
  1  0  1  1  3
  1  1  1  1  2  3
  1  1  1  2  2  2  4
  2  2  3  2  3  2  3  4
  2  2  3  2  3  3  3  3  5
  3  2  4  3  4  4  5  3  4  5
  3  3  5  4  4  5  5  5  4  4  6
  4  3  6  5  6  5  7  5  7  4  5  6
  5  5  7  7  8  7  8  8  7  7  5  5  7
  6  5  9  8 10  7 10  9 10  7  9  5  6  7
  7  7 10 10 12 11 11 11 12 10  9  9  6  6  8
  9  7 13 11 15 12 13 13 15 13 13  9 11  6  7  8
Row n = 9 counts the following strict partitions:
  (6,2,1)  (5,3,1)  (4,3,2)  (5,3,1)  (6,2,1)  (6,2,1)  (8,1)
                             (4,3,2)  (4,3,2)  (5,3,1)  (7,2)
                                                        (6,3)
                                                        (5,4)
Row n = 13 counts the following strict partitions (A=10, B=11, C=12):
  A21   931   841   751   652   751   841   931   A21  A21  C1
  7321  7321  832   742   643   7321  742   832   832  931  B2
  6421  5431  7321  6421  6421  652   7321  7321  742  841  A3
              6421  5431  5431  6421  643   643   652  751  94
              5431              5431  5431  6421            85
                                                            76
		

Crossrefs

Column n = k is A004526.
Column k = 3 is A025148.
For subsets instead of partitions we have A365541, non-binary A365381.
The non-binary version is A365661, non-strict A365543.
The non-binary complement is A365663, non-strict A046663.
Row sums are A366741, non-strict A366738.
The non-strict version is A367404.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}]

A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 2, 5, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2023

Keywords

Examples

			The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
Triangle begins:
  1
  0  1
  0  1  0
  0  1  0  1
  0  1  0  1  0
  0  1  0  2  0  0
  0  1  0  2  0  0  1
  0  1  0  3  0  0  0  1
  0  1  0  3  0  0  1  1  0
  0  1  0  4  0  0  0  3  0  0
  0  1  0  4  0  0  2  2  0  0  1
  0  1  0  5  0  0  0  5  0  0  0  1
  0  1  0  5  0  0  2  5  0  0  0  0  2
  0  1  0  6  0  0  0  8  0  0  0  1  0  2
  0  1  0  6  0  0  3  7  0  0  0  0  3  1  1
  0  1  0  7  0  0  0 12  0  0  0  1  0  4  0  2
  0  1  0  7  0  0  3 11  0  0  0  1  3  2  2  1  1
  0  1  0  8  0  0  0 16  0  0  0  1  0  7  0  3  0  2
  0  1  0  8  0  0  4 15  0  0  0  1  3  3  6  2  0  0  3
  0  1  0  9  0  0  0 21  0  0  0  2  0  9  0  7  0  1  0  4
  0  1  0  9  0  0  4 20  0  0  1  0  4  8  5  5  0  0  2  0  5
Row n = 14 counts the following partitions (A..E = 10..14):
  (E)  .  (D1)  .  .  (761)  (B21)  .  .  .  .  (6521)  (8321)  (7421)
          (C2)        (752)  (A31)              (6431)
          (B3)        (743)  (941)              (5432)
          (A4)               (932)
          (95)               (851)
          (86)               (842)
                             (653)
		

Crossrefs

Row sums are A000009.
Rightmost column n = k is A188431, non-strict A126796.
The one-based weighted row sums are A284640.
The corresponding rank statistic is A299701.
The non-strict version is A365658.
Central column n = 2k in the non-strict case is A365660.
Reverse-weighted row-sums are A365922, non-strict A276024.
A000041 counts integer partitions.
A000124 counts distinct sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]
Previous Showing 31-40 of 63 results. Next