cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A362559 Number of integer partitions of n whose weighted sum is divisible by n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 7, 8, 11, 14, 14, 18, 25, 28, 26, 42, 47, 52, 73, 77, 100, 118, 122, 158, 188, 219, 266, 313, 367, 412, 489, 578, 698, 809, 914, 1094, 1268, 1472, 1677, 1948, 2305, 2656, 3072, 3527, 4081, 4665, 5342, 6225, 7119, 8150, 9408
Offset: 1

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.
Also the number of n-multisets of positive integers that (1) have integer mean, (2) cover an initial interval, and (3) have weakly decreasing multiplicities.
Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n.

Examples

			The weighted sum of y = (4,2,2,1) is 1*4+2*2+3*2+4*1 = 18, which is a multiple of 9, so y is counted under a(9).
The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)    (4)  (5)      (6)     (7)        (8)       (9)
            (111)       (11111)  (222)   (3211)     (3311)    (333)
                                 (3111)  (1111111)  (221111)  (4221)
                                                              (222111)
                                                              (111111111)
		

Crossrefs

For median instead of mean we have A362558.
The complement is counted by A362560.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A264034 counts partitions by weighted sum.
A304818 = weighted sum of prime indices, row-sums of A359361.
A318283 = weighted sum of reversed prime indices, row-sums of A358136.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

Original entry on oeis.org

2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The odd version is A372590.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
          {2}   2  (1)
        {2,3}   6  (2,1)
      {1,2,3}   7  (4)
          {4}   8  (1,1,1)
        {1,4}   9  (2,2)
        {2,4}  10  (3,1)
      {1,2,4}  11  (5)
      {1,3,4}  13  (6)
    {1,2,3,4}  15  (3,2)
      {1,2,5}  19  (8)
        {4,5}  24  (2,1,1,1)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
          {6}  32  (1,1,1,1,1)
        {1,6}  33  (5,2)
        {2,6}  34  (7,1)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
    {1,2,3,6}  39  (6,2)
        {4,6}  40  (3,1,1,1)
      {1,4,6}  41  (13)
      {2,4,6}  42  (4,2,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
Positions of even terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372590.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A363532 Number of integer partitions of n with weighted alternating sum 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 2, 0, 3, 3, 3, 5, 5, 10, 12, 7, 14, 25, 18, 22, 48, 48, 41, 67, 82, 89, 111, 140, 170, 220, 214, 264, 392, 386, 436, 623, 693, 756, 934, 1102, 1301, 1565, 1697, 2132, 2616, 2727, 3192, 4062, 4550, 5000, 6132, 7197, 8067, 9338, 10750, 12683
Offset: 0

Views

Author

Gus Wiseman, Jun 14 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.

Examples

			The a(11) = 3 through a(15) = 12 partitions (A = 10):
  (33221)   (84)        (751)       (662)       (A5)
  (44111)   (6222)      (5332)      (4442)      (8322)
  (222221)  (7311)      (6421)      (5531)      (9411)
            (621111)    (532111)    (43331)     (722211)
            (51111111)  (42211111)  (54221)     (831111)
                                    (65111)     (3322221)
                                    (432221)    (3333111)
                                    (443111)    (4422111)
                                    (32222111)  (5511111)
                                    (33311111)  (22222221)
                                                (72111111)
                                                (6111111111)
		

Crossrefs

The unweighted version is A035363.
These partitions have ranks A363621.
The triangle for this rank statistic is A363623, reverse A363622.
The version for compositions is A363626.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],altwtsum[#]==0&]],{n,0,30}]

A363626 Number of integer compositions of n with weighted alternating sum 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 5, 7, 8, 14, 38, 64, 87, 174, 373, 649, 1069, 2051, 4091, 7453, 13276, 25260, 48990, 91378, 168890, 321661, 618323, 1169126, 2203649, 4211163, 8085240, 15421171, 29390131, 56382040, 108443047, 208077560, 399310778
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.

Examples

			The a(3) = 1 through a(10) = 14 compositions:
  (21)  (121)  .  (42)    (331)     (242)      (63)       (541)
                  (3111)  (1132)    (1331)     (153)      (2143)
                          (2221)    (11132)    (4122)     (3232)
                          (21121)   (12221)    (5211)     (4321)
                          (112111)  (23111)    (13122)    (15112)
                                    (121121)   (14211)    (31231)
                                    (1112111)  (411111)   (42121)
                                               (1311111)  (114112)
                                                          (212122)
                                                          (213211)
                                                          (311221)
                                                          (322111)
                                                          (3111121)
                                                          (21211111)
		

Crossrefs

The unweighted version is A138364, ranks A344619.
The version for partitions is A363532, ranks A363621.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],altwtsum[#]==0&]],{n,0,10}]

Extensions

Terms a(22) onward from Max Alekseyev, Sep 05 2023

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A222970 Number of 1 X (n+1) 0..1 arrays with every row least squares fitting to a positive-slope straight line and every column least squares fitting to a zero- or positive-slope straight line, with a single point array taken as having zero slope.

Original entry on oeis.org

1, 2, 6, 12, 28, 54, 119, 230, 488, 948, 1979, 3860, 7978, 15624, 32072, 63014, 128746, 253588, 516346, 1019072, 2069590, 4091174, 8291746, 16412668, 33210428, 65808044, 132985161, 263755984, 532421062, 1056789662, 2131312530, 4233176854
Offset: 1

Views

Author

R. H. Hardin, Mar 10 2013

Keywords

Comments

From Gus Wiseman, Jun 16 2023: (Start)
Also appears to be the number of integer compositions of n + 2 with weighted sum greater than reverse-weighted sum, where the weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i * y_i, and the reverse is Sum_{i=1..k} i * y_{k-i+1}. The a(1) = 1 through a(4) = 12 compositions are:
(21) (31) (32) (42)
(211) (41) (51)
(221) (231)
(311) (312)
(1211) (321)
(2111) (411)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
The version for partitions is A144300, strict A111133.
(End)

Examples

			Some solutions for n=3:
  0 1 0 1    0 1 1 1    0 0 1 0    0 0 1 1    0 0 0 1
		

Crossrefs

For >= instead of > we have A222855.
The case of equality is A222955.
Row 1 of A222969.
A053632 counts compositions by weighted sum (or reverse-weighted sum).
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.

A231429 Number of partitions of 2n into distinct parts < n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 4, 8, 14, 22, 35, 53, 78, 113, 160, 222, 306, 416, 558, 743, 980, 1281, 1665, 2149, 2755, 3514, 4458, 5626, 7070, 8846, 11020, 13680, 16920, 20852, 25618, 31375, 38309, 46649, 56651, 68616, 82908, 99940, 120192, 144238, 172730, 206425
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2013

Keywords

Comments

From Gus Wiseman, Jun 17 2023: (Start)
Also the number of integer compositions of n with weighted sum 3*n, where the weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i * y_i. The a(0) = 1 through a(9) = 14 compositions are:
() . . . . (11111) (3111) (3211) (3311) (3411)
(11211) (11311) (4121) (4221)
(12121) (11411) (5112)
(21112) (12221) (11511)
(13112) (12321)
(21131) (13131)
(21212) (13212)
(111122) (21231)
(21312)
(22122)
(31113)
(111141)
(111222)
(112113)
For partitions we have A363527, ranks A363531. For reversed partitions we have A363526, ranks A363530.
(End)

Examples

			a(5) = #{4+3+2+1} = 1;
a(6) = #{5+4+3, 5+4+2+1} = 2;
a(7) = #{6+5+3, 6+5+2+1, 6+4+3+1, 5+4+3+2} = 4;
a(8) = #{7+6+3, 7+6+2+1, 7+6+3, 7+5+3+1, 7+4+3+2, 6+5+4+1, 6+5+3+2, 6+4+3+2+1} = 8;
a(9) = #{8+7+3, 8+7+2+1, 8+6+4, 8+6+3+1, 8+5+4+1, 8+5+3+2, 8+4+3+2+1, 7+6+5, 7+6+4+1, 7+6+3+2, 7+5+4+2, 7+5+3+2+1, 6+5+4+3, 6+5+4+2+1} = 14.
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Haskell
    a231429 n = p [1..n-1] (2*n) where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Total[Accumulate[#]]==3n&]],{n,0,15}] (* Gus Wiseman, Jun 17 2023 *)

A359401 Nonnegative integers whose sum of positions of 1's in their binary expansion is greater than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left.

Original entry on oeis.org

11, 19, 23, 35, 37, 39, 43, 47, 55, 67, 69, 71, 75, 77, 79, 83, 87, 91, 95, 103, 111, 131, 133, 134, 135, 137, 139, 141, 142, 143, 147, 149, 151, 155, 157, 158, 159, 163, 167, 171, 173, 175, 179, 183, 187, 191, 199, 203, 207, 215, 223, 239, 259, 261, 262, 263
Offset: 1

Views

Author

Gus Wiseman, Jan 05 2023

Keywords

Comments

First differs from A161601 in having 134, with binary expansion (1,0,0,0,0,1,1,0), positions of 1's 1 + 6 + 7 = 14, reversed 2 + 3 + 8 = 13.

Crossrefs

Indices of positive terms in A359495; indices of 0's are A359402.
A030190 gives binary expansion, reverse A030308.
A070939 counts binary digits.
A230877 adds up positions of 1's in binary expansion, reverse A029931.
A326669 lists numbers with integer mean position of a 1 in binary expansion.

Programs

  • Mathematica
    sap[q_]:=Sum[q[[i]]*(2i-Length[q]-1),{i,Length[q]}];
    Select[Range[0,100],sap[IntegerDigits[#,2]]>0&]

Formula

A230877(a(n)) > A029931(a(n)).

A363619 Weighted alternating sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, -1, 3, -3, 4, 2, -2, -5, 5, 5, 6, -7, -4, -2, 7, 3, 8, 8, -6, -9, 9, -6, -3, -11, 4, 11, 10, 6, 11, 3, -8, -13, -5, -3, 12, -15, -10, -10, 13, 9, 14, 14, 7, -17, 15, 8, -4, 4, -12, 17, 16, -5, -7, -14, -14, -19, 17, -7, 18, -21, 10, -3, -9, 12, 19, 20
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) i * y_i.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with weighted alternating sum 1*1 - 2*1 + 3*2 - 4*3 + 5*3 = 8, so a(300) = 8.
		

Crossrefs

The non-alternating version is A304818, reverse A318283.
The unweighted version is A316524, reverse A344616.
The reverse version is A363620.
The triangle for this rank statistic is A363622, reverse A363623.
For partitions instead of multisets we have A363624, reverse A363625.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, zero-based A359678.
A359677 gives zero-based weighted sum of prime indices, reverse A359674.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[altwtsum[prix[n]],{n,100}]

A363620 Reverse-weighted alternating sum of the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 0, 4, 2, 2, -1, 5, 3, 6, -2, 1, 2, 7, 1, 8, 4, 0, -3, 9, 1, 3, -4, 4, 5, 10, 2, 11, 3, -1, -5, 2, 3, 12, -6, -2, 0, 13, 3, 14, 6, 5, -7, 15, 4, 4, 0, -3, 7, 16, 0, 1, -1, -4, -8, 17, 2, 18, -9, 6, 3, 0, 4, 19, 8, -5, 1, 20, 2, 21, -10, 3, 9, 3
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reverse-weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(k-i) i * y_{k-i+1}.

Examples

			The prime indices of 300 are {1,1,2,3,3}, with reverse-weighted alternating sum 1*3 - 2*3 + 3*2 - 4*1 + 5*1 = 4, so a(300) = 4.
		

Crossrefs

The reverse non-alternating version is A304818, row-sums of A359361.
The non-alternating version is A318283, row-sums of A358136.
The unweighted version is A344616, reverse A316524.
The reverse version is A363619.
Positions of zeros are A363621.
The triangle for this rank statistic is A363623, reverse A363622.
For partitions instead of multisets we have A363625, reverse A363624.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    revaltwtsum[y_]:=Sum[(-1)^(Length[y]-k)*k*y[[-k]],{k,1,Length[y]}];
    Table[revaltwtsum[prix[n]],{n,100}]
Previous Showing 31-40 of 68 results. Next