A340103
a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k).
Original entry on oeis.org
1, 1, 2, 12, 80, 875, 10584, 170471, 2949120, 63772920, 1441000000, 38818444632, 1089573617664, 35185728919614, 1175820172477440, 44425722744140625, 1722925924631969792, 74364737115532234518, 3291298649632850485248, 159785357022861166517580, 7932051456000000000000000
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Unprotect[Power]; 0^0 = 1; Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] n^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 20}]
Join[{1}, Table[SeriesCoefficient[n*QPochhammer[-1/n, n*x]/(n+1), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)
A370016
Expansion of A(x) = [ Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) ]^(1/3).
Original entry on oeis.org
1, 1, -1, 9, -18, 44, -54, 350, -1359, 3789, -9585, 42489, -163900, 543474, -1933092, 7499404, -27668718, 100329714, -371138346, 1394575578, -5236658316, 19587163968, -73536845444, 278088068628, -1052804678958, 3985553554074, -15132118280498, 57617112474306, -219680808219216
Offset: 0
G.f.: A(x) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + 543474*x^13 - 1933092*x^14 + 7499404*x^15 + ...
where the cube of g.f. A(x) yields the series
A(x)^3 = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The cube of g.f. A(x) also equals the infinite product
A(x)^3 = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
Equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) * (1 + 6*x^2 - 24*x^4 - 64*x^6)^(1/3) * (1 + 12*x^3 - 96*x^6 - 512*x^9)^(1/3) * (1 + 24*x^4 - 384*x^8 - 4096*x^12)^(1/3) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15)^(1/3) * ...
where
(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 + ... + A370145(n)*x^n + ...
-
Round[CoefficientList[Series[QPochhammer[-2, 2*x]^(1/3) * QPochhammer[-1/2, 2*x]^(1/3) * QPochhammer[2*x]^(1/3)*2^(1/3)/3^(2/3), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 23 2024 *)
-
{a(n) = my(A);
A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n))^(1/3);
polcoeff(H=A, n)}
for(n=0, 30, print1(a(n), ", "))
A358907
Number of finite sequences of distinct integer compositions with total sum n.
Original entry on oeis.org
1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
Offset: 0
The a(1) = 1 through a(4) = 18 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((21)) ((22))
((111)) ((31))
((1)(2)) ((112))
((2)(1)) ((121))
((1)(11)) ((211))
((11)(1)) ((1111))
((1)(3))
((3)(1))
((1)(12))
((11)(2))
((1)(21))
((12)(1))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the strict case of
A133494.
The version for sequences of partitions is
A358906.
A001970 counts multiset partitions of integer partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.
Cf.
A000009,
A000041,
A000219,
A055887,
A075900,
A296122,
A304961,
A307068,
A336342,
A358836,
A358912.
-
g:= proc(n) option remember; ceil(2^(n-1)) end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Dec 15 2022
-
comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]
A336343
Number of ways to choose a strict partition of each part of a strict composition of n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 39, 78, 142, 320, 488, 913, 1558, 2798, 5865, 9482, 16742, 28474, 50814, 82800, 172540, 266093, 472432, 790824, 1361460, 2251665, 3844412, 7205416, 11370048, 19483502, 32416924, 54367066, 88708832, 149179800, 239738369, 445689392
Offset: 0
The a(1) = 1 through a(5) = 11 ways:
(1) (2) (3) (4) (5)
(2,1) (3,1) (3,2)
(1),(2) (1),(3) (4,1)
(2),(1) (3),(1) (1),(4)
(1),(2,1) (2),(3)
(2,1),(1) (3),(2)
(4),(1)
(1),(3,1)
(2,1),(2)
(2),(2,1)
(3,1),(1)
Multiset partitions of partitions are
A001970.
Splittings of strict partitions are
A072706.
Set partitions of strict partitions are
A294617.
Splittings of partitions with distinct sums are
A336131.
Cf.
A008289,
A011782,
A304786,
A318683,
A318684,
A319794,
A323583,
A336128,
A336130,
A336132,
A336133.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
strptn[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
Table[Length[Join@@Table[Tuples[strptn/@ctn],{ctn,Join@@Permutations/@strptn[n]}]],{n,0,10}]
-
\\ here Q(N) gives A000009 as a vector.
Q(n) = {Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)))}
seq(n)={my(b=Q(n)); [subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*b[1+k] + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021
A344063
Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
Original entry on oeis.org
1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
Offset: 0
Cf.
A003056,
A008289,
A261568,
A304961,
A338673,
A340103,
A344062,
A344064,
A344065,
A344066,
A344067,
A344068.
-
nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344064
Expansion of Product_{k>=1} (1 + 5^(k-1)*x^k).
Original entry on oeis.org
1, 1, 5, 30, 150, 875, 4500, 25625, 131250, 750000, 3843750, 21562500, 112109375, 621093750, 3222656250, 17880859375, 92578125000, 508300781250, 2658691406250, 14465332031250, 75439453125000, 411254882812500, 2142486572265625, 11590576171875000, 60722351074218750, 326728820800781250
Offset: 0
Cf.
A003056,
A008289,
A261569,
A304961,
A338674,
A340103,
A344062,
A344063,
A344065,
A344066,
A344067,
A344068.
-
nmax = 25; CoefficientList[Series[Product[(1 + 5^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 5^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 25}]
-
seq(n)={Vec(prod(k=1, n, 1 + 5^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A336141
Number of ways to choose a strict composition of each part of an integer partition of n.
Original entry on oeis.org
1, 1, 2, 5, 9, 17, 41, 71, 138, 270, 518, 938, 1863, 3323, 6163, 11436, 20883, 37413, 69257, 122784, 221873, 397258, 708142, 1249955, 2236499, 3917628, 6909676, 12130972, 21251742, 36973609, 64788378, 112103360, 194628113, 336713377, 581527210, 1000153063
Offset: 0
The a(1) = 1 through a(5) = 17 ways:
(1) (2) (3) (4) (5)
(1),(1) (1,2) (1,3) (1,4)
(2,1) (3,1) (2,3)
(2),(1) (2),(2) (3,2)
(1),(1),(1) (3),(1) (4,1)
(1,2),(1) (3),(2)
(2,1),(1) (4),(1)
(2),(1),(1) (1,2),(2)
(1),(1),(1),(1) (1,3),(1)
(2,1),(2)
(3,1),(1)
(2),(2),(1)
(3),(1),(1)
(1,2),(1),(1)
(2,1),(1),(1)
(2),(1),(1),(1)
(1),(1),(1),(1),(1)
Multiset partitions of partitions are
A001970.
Splittings of partitions are
A323583.
Splittings of partitions with distinct sums are
A336131.
Partitions:
- Partitions of each part of a partition are
A063834.
- Compositions of each part of a partition are
A075900.
- Strict partitions of each part of a partition are
A270995.
- Strict compositions of each part of a partition are
A336141.
Strict partitions:
- Partitions of each part of a strict partition are
A271619.
- Compositions of each part of a strict partition are
A304961.
- Strict partitions of each part of a strict partition are
A279785.
- Strict compositions of each part of a strict partition are
A336142.
Compositions:
- Partitions of each part of a composition are
A055887.
- Compositions of each part of a composition are
A133494.
- Strict partitions of each part of a composition are
A304969.
- Strict compositions of each part of a composition are
A307068.
Strict compositions:
- Partitions of each part of a strict composition are
A336342.
- Compositions of each part of a strict composition are
A336127.
- Strict partitions of each part of a strict composition are
A336343.
- Strict compositions of each part of a strict composition are
A336139.
-
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 g(n$2):
seq(a(n), n=0..38); # Alois P. Heinz, Jul 31 2020
-
Table[Length[Join@@Table[Tuples[Join@@Permutations/@Select[IntegerPartitions[#],UnsameQ@@#&]&/@ctn],{ctn,IntegerPartitions[n]}]],{n,0,10}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0,
If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p+1]]];
g[n_, i_] := g[n, i] = If[n==0 || i==1, 1, g[n, i-1] +
b[i, i, 0] g[n-i, Min[n-i, i]]];
a[n_] := g[n, n];
a /@ Range[0, 38] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
A344065
Expansion of Product_{k>=1} (1 + 6^(k-1)*x^k).
Original entry on oeis.org
1, 1, 6, 42, 252, 1728, 10584, 71280, 435456, 2939328, 17962560, 119532672, 739031040, 4867527168, 30051689472, 198147658752, 1221537687552, 7984437608448, 49643697954816, 321998350270464, 1997815999463424, 12977575759282176, 80455233450737664, 519208351807832064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338675,
A340103,
A344062,
A344063,
A344064,
A344066,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 6^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 6^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344066
Expansion of Product_{k>=1} (1 + 7^(k-1)*x^k).
Original entry on oeis.org
1, 1, 7, 56, 392, 3087, 21952, 170471, 1210104, 9411920, 66824632, 513890832, 3683707839, 28086110472, 201122377288, 1534688027817, 10978118077136, 83158453503608, 599161640356888, 4508826988300152, 32435340235930576, 244366486039786096, 1756858874561956865, 13161303959340223232
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338676,
A340103,
A344062,
A344063,
A344064,
A344065,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 7^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 7^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344067
Expansion of Product_{k>=1} (1 + 8^(k-1)*x^k).
Original entry on oeis.org
1, 1, 8, 72, 576, 5120, 41472, 364544, 2949120, 25952256, 209977344, 1830813696, 14931722240, 129251672064, 1053340729344, 9123584278528, 74294344286208, 639503450505216, 5239722662166528, 44846880273727488, 367008185258606592, 3144110674230116352, 25718087147075928064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338677,
A340103,
A344062,
A344063,
A344064,
A344065,
A344066,
A344068.
-
nmax = 22; CoefficientList[Series[Product[(1 + 8^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 8^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, 1 + 8^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
Comments