cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A320325 Numbers whose product of prime indices is a perfect power.

Original entry on oeis.org

7, 9, 14, 18, 19, 21, 23, 25, 27, 28, 36, 38, 42, 46, 49, 50, 53, 54, 56, 57, 63, 72, 76, 81, 84, 92, 97, 98, 100, 103, 106, 108, 112, 114, 115, 121, 125, 126, 131, 133, 144, 147, 151, 152, 159, 161, 162, 168, 169, 171, 175, 183, 184, 185, 189, 194, 195, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their corresponding multiset multisystems (A302242):
   7: {{1,1}}
   9: {{1},{1}}
  14: {{},{1,1}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  36: {{},{},{1},{1}}
  38: {{},{1,1,1}}
  42: {{},{1},{1,1}}
  46: {{},{2,2}}
  49: {{1,1},{1,1}}
  50: {{},{2},{2}}
  53: {{1,1,1,1}}
  54: {{},{1},{1},{1}}
  56: {{},{},{},{1,1}}
  57: {{1},{1,1,1}}
  63: {{1},{1},{1,1}}
  72: {{},{},{},{1},{1}}
  76: {{},{},{1,1,1}}
  81: {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],GCD@@FactorInteger[Times@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]^k]][[All,2]]>1&]

A000665 Number of 3-uniform hypergraphs on n unlabeled nodes, or equivalently number of relations with 3 arguments on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 34, 2136, 7013320, 1788782616656, 53304527811667897248, 366299663432194332594005123072, 1171638318502989084030402509596875836036608, 3517726593606526072882013063011594224625680712384971214848
Offset: 0

Views

Author

Keywords

Comments

The Qian reference has one incorrect term. The formula given in corollary 2.6 also contains a minor error. The second summation needs to be over p_i*p_j*p_h/lcm(p_i, p_j, p_h) rather than gcd(p_i, p_j, p_h)^2. - Andrew Howroyd, Dec 11 2018

Examples

			From _Gus Wiseman_, Dec 13 2018: (Start)
Non-isomorphic representatives of the a(5) = 34 hypergraphs:
  {}
  {{123}}
  {{125}{345}}
  {{134}{234}}
  {{123}{245}{345}}
  {{124}{134}{234}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{124}{134}{234}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A092337. Spanning 3-uniform hypergraphs are counted by A322451.
Column k=3 of A309858.

Programs

  • Mathematica
    (* about 85 seconds on a laptop computer *)
    Needs["Combinatorica`"];Table[A = Subsets[Range[n],{3}];CycleIndex[Replace[Map[Sort,System`PermutationReplace[A, SymmetricGroup[n]], {2}],Table[A[[i]] -> i, {i, 1, Length[A]}], 2], s] /. Table[s[i] -> 2, {i, 1, Binomial[n, 3]}], {n, 1, 8}] (* Geoffrey Critzer, Oct 28 2015 *)
    Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{3}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,8}] (* Gus Wiseman, Dec 13 2018 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[p_] := Sum[Ceiling[(p[[i]] - 1)*((p[[i]] - 2)/6)], {i, 1, Length[p]}] + Sum[Sum[c = p[[i]]; d = p[[j]]; GCD[c, d]*(c + d - 2 + Mod[(c - d)/GCD[c, d], 2])/2 + Sum[c*d*p[[k]]/LCM[c, d, p[[k]]], {k, 1, j - 1}], {j, 1, i - 1}], {i, 2, Length[p]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    a /@ Range[0, 12] (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(p)={sum(i=1, #p, ceil((p[i]-1)*(p[i]-2)/6)) + sum(i=2, #p, sum(j=1, i-1, my(c=p[i], d=p[j]); gcd(c,d)*(c + d - 2 + (c-d)/gcd(c,d)%2)/2 + sum(k=1, j-1, c*d*p[k]/lcm(lcm(c,d), p[k]))))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Dec 11 2018

Extensions

Corrected and extended by Vladeta Jovovic
a(0)=1 prepended and a(12) from Andrew Howroyd, Dec 11 2018

A317583 Number of multiset partitions of normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 8, 30, 32, 342, 128, 3754, 11360, 56138, 2048, 3834670, 8192, 27528494, 577439424, 2681075210, 131072, 238060300946, 524288, 11045144602614, 115488471132032, 49840258213638, 8388608, 152185891301461434, 140102945910265344, 124260001149229146, 85092642310351607968
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.
a(n) is the number of nonnegative integer matrices with total sum n, nonzero rows and each column with the same sum with columns in nonincreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Examples

			The a(3) = 8 multiset partitions:
  {{1,1,1}}
  {{1,1,2}}
  {{1,2,2}}
  {{1,2,3}}
  {{1},{1},{1}}
  {{1},{1},{2}}
  {{1},{2},{2}}
  {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Length/@#&]],{n,8}]
  • PARI
    \\ here U(n,m) gives number for m blocks of size n.
    U(n,m)={sum(k=1, n*m, binomial(binomial(k+n-1, n)+m-1, m)*sum(r=k, n*m, binomial(r, k)*(-1)^(r-k)) )}
    a(n)={sumdiv(n, d, U(d, n/d))} \\ Andrew Howroyd, Sep 15 2018

Formula

a(p) = 2^p for prime p. - Andrew Howroyd, Sep 15 2018
a(n) = Sum_{d|n} A331315(n/d, d). - Andrew Howroyd, Jan 15 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 15 2018

A319190 Number of regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 3, 19, 879, 5280907, 1069418570520767
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 19 regular hypergraphs:
                 {{1,2,3}}
                {{1},{2,3}}
                {{2},{1,3}}
                {{3},{1,2}}
               {{1},{2},{3}}
            {{1},{2,3},{1,2,3}}
            {{2},{1,3},{1,2,3}}
            {{3},{1,2},{1,2,3}}
            {{1,2},{1,3},{2,3}}
           {{1},{2},{3},{1,2,3}}
           {{1},{2},{1,3},{2,3}}
           {{1},{3},{1,2},{2,3}}
           {{2},{3},{1,2},{1,3}}
        {{1,2},{1,3},{2,3},{1,2,3}}
       {{1},{2},{1,3},{2,3},{1,2,3}}
       {{1},{3},{1,2},{2,3},{1,2,3}}
       {{2},{3},{1,2},{1,3},{1,2,3}}
      {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{1,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,2^n}],{n,5}]

Extensions

a(6) from Andrew Howroyd, Mar 12 2020

A322794 Number of factorizations of n into factors > 1 where all factors have the same number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

Also the number of uniform multiset partitions of the multiset of prime indices of n, where a multiset partition is uniform if all parts have the same size.

Examples

			The a(1260) = 13 factorizations:
  (1260)  (18*70)   (4*9*35)   (2*2*3*3*5*7)
          (20*63)   (6*6*35)
          (28*45)   (4*15*21)
          (30*42)   (6*10*21)
          (12*105)  (6*14*15)
                    (9*10*14)
The a(1260) = 13 multiset partitions:
  {{1},{1},{2},{2},{3},{4}}
     {{1,1},{2,2},{3,4}}
     {{1,1},{2,3},{2,4}}
     {{1,2},{1,2},{3,4}}
     {{1,2},{1,3},{2,4}}
     {{1,2},{1,4},{2,3}}
     {{2,2},{1,3},{1,4}}
      {{1,1,2},{2,3,4}}
      {{1,2,2},{1,3,4}}
      {{1,1,3},{2,2,4}}
      {{1,1,4},{2,2,3}}
      {{1,2,3},{1,2,4}}
       {{1,1,2,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@PrimeOmega/@#&]],{n,100}]

A299471 Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 41, 11, 1, 1, 768, 958, 26, 1, 1, 27449, 1042642, 32596, 57, 1, 1, 1887284, 34352419335, 34359509614, 2096731, 120, 1, 1, 252522481, 72057319189324805, 1180591620442534312297, 72057594021152435, 268434467, 247, 1, 1, 66376424160
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
  1;
  1,     1;
  1,     4,       1;
  1,    41,      11,     1;
  1,   768,     958,    26,  1;
  1, 27449, 1042642, 32596, 57, 1;
  ...
		

Crossrefs

Columns 1..4 are A000012, A006129, A302374, A302396.
Row sums are A306021.
The unlabeled version is A301922.
The connected version is A299354.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}]
  • PARI
    T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ Andrew Howroyd, Jan 16 2024

Formula

T(n, k) = Sum_{d = 0..n} (-1)^(n-d)*binomial(n,d)*2^binomial(d,k).

A326512 Number of set partitions of {1..n} where every block has the same average.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 18, 16, 75, 64, 405, 302, 2581, 1693, 19872, 11295, 175807, 87524, 1851135, 787515, 21909766, 8185713, 298698113, 96514608, 4538610230, 1285072142
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2019

Keywords

Comments

The common average is necessarily (n+1)/2. The number of blocks with this average is given by A070925. - Christian Sievers, Aug 22 2024

Examples

			The a(1) = 1 through a(7) = 18 set partitions:
  {1}  {12}  {123}    {1234}    {12345}      {123456}      {1234567}
             {13}{2}  {14}{23}  {1245}{3}    {1256}{34}    {123567}{4}
                                {135}{24}    {1346}{25}    {12467}{35}
                                {15}{234}    {16}{2345}    {1267}{345}
                                {15}{24}{3}  {16}{25}{34}  {13457}{26}
                                                           {1357}{246}
                                                           {1456}{237}
                                                           {147}{2356}
                                                           {156}{2347}
                                                           {17}{23456}
                                                           {1267}{35}{4}
                                                           {1357}{26}{4}
                                                           {147}{26}{35}
                                                           {156}{237}{4}
                                                           {17}{2356}{4}
                                                           {17}{246}{35}
                                                           {17}{26}{345}
                                                           {17}{26}{35}{4}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],SameQ@@Mean/@#&]],{n,0,8}]

Extensions

a(12)-a(15) from Alois P. Heinz, Jul 12 2019
a(16)-a(26) from Christian Sievers, Aug 22 2024

A319612 Number of regular simple graphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 1, 7, 13, 171, 931, 45935, 1084413, 155862511, 10382960971, 6939278572095, 2203360500122299, 4186526756621772343, 3747344008241368443819, 35041787059691023579970847, 156277111373303386104606663421, 4142122641757598618318165240180095
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. The span of a graph is the union of its edges.

Examples

			The a(4) = 7 edge-sets:
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

a(n) = A295193(n) - 1.

Extensions

a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A301922 Regular triangle where T(n,k) is the number of unlabeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 3, 1, 1, 23, 29, 4, 1, 1, 122, 2102, 150, 5, 1, 1, 888, 7011184, 7013164, 1037, 6, 1, 1, 11302, 1788775603336, 29281354507753848, 1788782615612, 12338, 7, 1, 1, 262322, 53304526022885280592, 234431745534048893449761040648512, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2   1
   1   7   3   1
   1  23  29   4   1
The T(4,2) = 7 hypergraphs:
  {{1,2},{3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301481. Second column is A002494.

Programs

  • Maple
    g:= (l, i, n)-> `if`(i=0, `if`(n=0, [[]], []), [seq(map(x->
         [x[], j], g(l, i-1, n-j))[], j=0..min(l[i], n))]):
    h:= (p, v)-> (q-> add((s-> add(`if`(andmap(i-> irem(k[i], p[i]
         /igcd(t, p[i]))=0, [$1..q]), mul((m-> binomial(m, k[i]*m
         /p[i]))(igcd(t, p[i])), i=1..q), 0), t=1..s)/s)(ilcm(seq(
        `if`(k[i]=0, 1, p[i]), i=1..q))), k=g(p, q, v)))(nops(p)):
    b:= (n, i, l, v)-> `if`(n=0 or i=1, 2^((p-> h(p, v))([l[], 1$n]))
         /n!, add(b(n-i*j, i-1, [l[], i$j], v)/j!/i^j, j=0..n/i)):
    A:= proc(n, k) A(n, k):= `if`(k>n-k, A(n, n-k), b(n$2, [], k)) end:
    T:= (n, k)-> A(n, k)-A(n-1, k):
    seq(seq(T(n, k), k=1..n), n=1..9);  # Alois P. Heinz, Aug 21 2019
  • PARI
    permcount(v)={my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L,k); while(#L0, u=vecsort(apply(f, u)); d=lex(u,v)); !d}
    Q(n,k,perm)={my(t=0); forsubset([n,k], v, t += can(Vec(v), t->perm[t])); t}
    U(n,k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n,k,rep(p))); s/n!}
    for(n=1, 10, for(k=1, n, print1(U(n,k)-U(n-1,k), ", ")); print) \\ Andrew Howroyd, Aug 10 2019

Formula

T(n,k) = A309858(n,k) - A309858(n-1,k). - Alois P. Heinz, Aug 21 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 09 2019

A322451 Number of unlabeled 3-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 0, 1, 3, 29, 2102, 7011184, 1788775603336, 53304526022885280592, 366299663378889804782337225824, 1171638318502622784366970315264281830913536, 3517726593606524901243694560022510194223171115509135178240
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

3-uniform means that every edge consists of 3 vertices. - Brendan McKay, Sep 03 2023

Examples

			Non-isomorphic representatives of the a(5) = 29 hypergraphs:
  {{125}{345}}
  {{123}{245}{345}}
  {{135}{245}{345}}
  {{145}{245}{345}}
  {{123}{145}{245}{345}}
  {{124}{135}{245}{345}}
  {{125}{135}{245}{345}}
  {{134}{235}{245}{345}}
  {{145}{235}{245}{345}}
  {{123}{124}{135}{245}{345}}
  {{123}{145}{235}{245}{345}}
  {{124}{134}{235}{245}{345}}
  {{134}{145}{235}{245}{345}}
  {{135}{145}{235}{245}{345}}
  {{145}{234}{235}{245}{345}}
  {{123}{124}{134}{235}{245}{345}}
  {{123}{134}{145}{235}{245}{345}}
  {{123}{145}{234}{235}{245}{345}}
  {{124}{135}{145}{235}{245}{345}}
  {{125}{135}{145}{235}{245}{345}}
  {{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{235}{245}{345}}
  {{124}{135}{145}{234}{235}{245}{345}}
  {{125}{135}{145}{234}{235}{245}{345}}
  {{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{135}{145}{234}{235}{245}{345}}
  {{125}{134}{135}{145}{234}{235}{245}{345}}
  {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(12) from Andrew Howroyd, Dec 15 2018
Name corrected by Brendan McKay, Sep 03 2023
Previous Showing 11-20 of 58 results. Next