cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020

A322785 Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal. A multiset partition is uniform if all parts have the same size.

Examples

			The a(1) = 1 though a(6) = 48 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}          {111111}
       {12}    {123}      {1122}        {12345}          {111222}
       {1}{1}  {1}{1}{1}  {1234}        {1}{1}{1}{1}{1}  {112233}
       {1}{2}  {1}{2}{3}  {11}{11}      {1}{2}{3}{4}{5}  {123456}
                          {11}{22}                       {111}{111}
                          {12}{12}                       {111}{222}
                          {12}{34}                       {112}{122}
                          {13}{24}                       {112}{233}
                          {14}{23}                       {113}{223}
                          {1}{1}{1}{1}                   {122}{133}
                          {1}{1}{2}{2}                   {123}{123}
                          {1}{2}{3}{4}                   {123}{456}
                                                         {124}{356}
                                                         {125}{346}
                                                         {126}{345}
                                                         {134}{256}
                                                         {135}{246}
                                                         {136}{245}
                                                         {145}{236}
                                                         {146}{235}
                                                         {156}{234}
                                                         {11}{11}{11}
                                                         {11}{12}{22}
                                                         {11}{22}{33}
                                                         {11}{23}{23}
                                                         {12}{12}{12}
                                                         {12}{12}{33}
                                                         {12}{13}{23}
                                                         {12}{34}{56}
                                                         {12}{35}{46}
                                                         {12}{36}{45}
                                                         {13}{13}{22}
                                                         {13}{24}{56}
                                                         {13}{25}{46}
                                                         {13}{26}{45}
                                                         {14}{23}{56}
                                                         {14}{25}{36}
                                                         {14}{26}{35}
                                                         {15}{23}{46}
                                                         {15}{24}{36}
                                                         {15}{26}{34}
                                                         {16}{23}{45}
                                                         {16}{24}{35}
                                                         {16}{25}{34}
                                                         {1}{1}{1}{1}{1}{1}
                                                         {1}{1}{1}{2}{2}{2}
                                                         {1}{1}{2}{2}{3}{3}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}]

Formula

a(n) = 4 <=> n in { A000040 }. - Alois P. Heinz, Feb 03 2022

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(14) and beyond from Andrew Howroyd, Feb 03 2022

A301920 Number of unlabeled uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 3, 10, 55, 2369, 14026242, 29284932065996223, 468863491068204425232922367146585, 1994324729204021501147398087008429476673379600542622915802043455294332
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 10 hypergraphs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 26 2019

A299354 Regular triangle where T(n,k) is the number of labeled connected k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 38, 11, 1, 0, 728, 958, 26, 1, 0, 26704, 1042632, 32596, 57, 1, 0, 1866256, 34352418950, 34359509614, 2096731, 120, 1, 0, 251548592, 72057319189266922, 1180591620442534312262, 72057594021152435, 268434467, 247, 1, 0, 66296291072
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
1
0, 1
0, 4, 1
0, 38, 11, 1
0, 728, 958, 26, 1
0, 26704, 1042632, 32596, 57, 1
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[SeriesCoefficient[Log[Sum[x^n/n!*Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,0,nn}]],{x,0,n}]*n!,{n,nn},{k,n}]

Formula

Column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k).

A317584 Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 6, 19, 14, 113, 30, 584, 1150, 4023, 112, 119866, 202, 432061, 5442765, 16646712, 594, 738090160, 980, 13160013662, 113864783987, 39049423043, 2510, 44452496723053, 19373518220009, 21970704599961, 8858890258339122, 43233899006497146, 9130, 4019875470540832643
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 19 multiset partitions:
  {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}},
  {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}},
  {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}},
  {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}},
  {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)}
    StronglyNormalLabelingsSeq(cycleIndex(15)) \\ Andrew Howroyd, Jan 01 2021

Formula

a(p) = 2*A000041(p) for prime p. - Andrew Howroyd, Jan 01 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2021

A319540 Number of unlabeled 3-uniform hypergraphs spanning n vertices such that every pair of vertices appears together in some block.

Original entry on oeis.org

1, 1, 0, 1, 2, 14, 964, 3908438
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 14 hypergraphs:
              {{123}{145}{245}{345}}
            {{123}{124}{135}{245}{345}}
            {{123}{145}{235}{245}{345}}
          {{123}{134}{145}{235}{245}{345}}
          {{123}{145}{234}{235}{245}{345}}
          {{124}{135}{145}{235}{245}{345}}
          {{125}{135}{145}{235}{245}{345}}
        {{123}{124}{135}{145}{235}{245}{345}}
        {{124}{135}{145}{234}{235}{245}{345}}
        {{125}{135}{145}{234}{235}{245}{345}}
      {{123}{124}{135}{145}{234}{235}{245}{345}}
      {{125}{134}{135}{145}{234}{235}{245}{345}}
    {{124}{125}{134}{135}{145}{234}{235}{245}{345}}
  {{123}{124}{125}{134}{135}{145}{234}{235}{245}{345}}
		

Crossrefs

Extensions

a(6)-a(7) from Andrew Howroyd, Aug 17 2019

A323297 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 16, 76, 271, 1212, 10158, 78290, 503231, 3495966, 33016534, 327625520, 3000119669, 28185006956, 308636238516, 3631959615948, 42031903439809, 493129893459310, 6264992355842706, 84639308481270656, 1159506969481515271, 16131054826385628592
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(4) = 16 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,3,4}}
  {{2,3,4}}
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 8 unlabeled 3-uniform hypergraphs on 6 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 271:
   1 X {}
  20 X {{1,2,3}}
  90 X {{1,3,4},{2,3,4}}
  10 X {{1,2,3},{4,5,6}}
  60 X {{1,4,5},{2,4,5},{3,4,5}}
  60 X {{1,2,4},{1,3,4},{2,3,4}}
  15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}
  15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

Binomial transform of A323296.
E.g.f.: exp(x - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). - Andrew Howroyd, Aug 18 2019

Extensions

a(10)-a(11) from Alois P. Heinz, Aug 11 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A326569 Number of covering antichains of subsets of {1..n} with no singletons and different edge-sizes.

Original entry on oeis.org

1, 0, 1, 1, 13, 121, 2566, 121199, 13254529
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(2) = 1 through a(4) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}
                      {{1,2},{1,3,4}}
                      {{1,2},{2,3,4}}
                      {{1,3},{1,2,4}}
                      {{1,3},{2,3,4}}
                      {{1,4},{1,2,3}}
                      {{1,4},{2,3,4}}
                      {{2,3},{1,2,4}}
                      {{2,3},{1,3,4}}
                      {{2,4},{1,2,3}}
                      {{2,4},{1,3,4}}
                      {{3,4},{1,2,3}}
                      {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case with singletons is A326570.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Formula

a(n) = A326570(n) - n*a(n-1) for n > 0. - Andrew Howroyd, Aug 13 2019

Extensions

a(8) from Andrew Howroyd, Aug 13 2019

A326570 Number of covering antichains of subsets of {1..n} with different edge-sizes.

Original entry on oeis.org

2, 1, 1, 4, 17, 186, 3292, 139161, 14224121
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sizes are the numbers of vertices in each edge, so for example the edge-sizes of {{1,3},{2,5},{3,4,5}} are {2,2,3}.

Examples

			The a(0) = 2 through a(4) = 17 antichains:
  {}    {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}
  {{}}                  {{1},{2,3}}  {{1},{2,3,4}}
                        {{2},{1,3}}  {{2},{1,3,4}}
                        {{3},{1,2}}  {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                     {{1,2},{1,3,4}}
                                     {{1,2},{2,3,4}}
                                     {{1,3},{1,2,4}}
                                     {{1,3},{2,3,4}}
                                     {{1,4},{1,2,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,3},{1,2,4}}
                                     {{2,3},{1,3,4}}
                                     {{2,4},{1,2,3}}
                                     {{2,4},{1,3,4}}
                                     {{3,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block sizes are A007837.
The case without singletons is A326569.
(Antichain) covers with equal edge-sizes are A306021.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,6}]

Extensions

a(8) from Andrew Howroyd, Aug 13 2019

A301924 Regular triangle where T(n,k) is the number of unlabeled k-uniform connected hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 21, 29, 4, 1, 0, 112, 2101, 150, 5, 1, 0, 853, 7011181, 7013164, 1037, 6, 1, 0, 11117, 1788775603301, 29281354507753847, 1788782615612, 12338, 7, 1, 0, 261080, 53304526022885278403, 234431745534048893449761040648508, 234431745534048922729326772799024, 53304527811667884902, 274659, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Examples

			Triangle begins:
   1
   0    1
   0    2       1
   0    6       3       1
   0   21      29       4    1
   0  112    2101     150    5 1
   0  853 7011181 7013164 1037 6 1
   ...
The T(4,2) = 6 hypergraphs:
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Row sums are A301920.
Columns k=2..3 are A001349(n > 1), A003190(n > 1).

Programs

  • PARI
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoeff(p,n)), vector(#v,n,1/n))}
    permcount(v)={my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    rep(typ)={my(L=List(), k=0); for(i=1, #typ, k+=typ[i]; listput(L, k); while(#L0, u=vecsort(apply(f, u)); d=lex(u, v)); !d}
    Q(n, k, perm)={my(t=0); forsubset([n, k], v, t += can(Vec(v), t->perm[t])); t}
    U(n, k)={my(s=0); forpart(p=n, s += permcount(p)*2^Q(n, k, rep(p))); s/n!}
    A(n)={Mat(vector(n, k, InvEulerT(vector(n,i,U(i,k)-U(i-1,k)))~))}
    { my(T=A(8)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 26 2019

Formula

Column k is the inverse Euler transform of column k of A301922. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019
Previous Showing 21-30 of 42 results. Next