cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A309609 Digits of the 10-adic integer (23/9)^(1/3).

Original entry on oeis.org

3, 6, 2, 9, 7, 6, 0, 4, 7, 4, 2, 3, 4, 9, 0, 2, 1, 6, 5, 5, 4, 5, 9, 7, 3, 3, 2, 6, 4, 9, 6, 0, 0, 6, 4, 9, 5, 3, 2, 3, 1, 9, 6, 3, 3, 0, 5, 6, 1, 1, 4, 7, 2, 3, 1, 6, 2, 5, 7, 9, 9, 7, 3, 5, 1, 0, 8, 4, 2, 0, 2, 6, 3, 1, 6, 8, 2, 6, 4, 8, 4, 3, 4, 5, 9, 5, 3, 8, 9, 8, 6, 5, 7, 9, 1, 7, 2, 7, 6, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       3^3 == 7      (mod 10).
      63^3 == 47     (mod 10^2).
     263^3 == 447    (mod 10^3).
    9263^3 == 4447   (mod 10^4).
   79263^3 == 44447  (mod 10^5).
  679263^3 == 444447 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((23/9+O(2^N))^(1/3), 2^N), Mod((23/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309609(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 23)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309609(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 23) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n

A309610 Digits of the 10-adic integer (41/9)^(1/3).

Original entry on oeis.org

9, 4, 6, 5, 9, 6, 4, 6, 9, 6, 3, 6, 9, 7, 3, 3, 0, 2, 6, 9, 3, 9, 8, 4, 7, 8, 8, 6, 1, 5, 5, 7, 1, 8, 4, 4, 0, 3, 6, 1, 8, 2, 1, 5, 9, 2, 0, 3, 8, 9, 5, 6, 4, 1, 5, 7, 2, 0, 1, 8, 9, 8, 3, 1, 1, 7, 3, 6, 8, 6, 1, 3, 7, 2, 5, 7, 1, 7, 7, 3, 7, 1, 7, 6, 9, 7, 1, 7, 0, 3, 1, 8, 7, 3, 1, 0, 6, 2, 3, 3
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       9^3 == 9      (mod 10).
      49^3 == 49     (mod 10^2).
     649^3 == 449    (mod 10^3).
    5649^3 == 4449   (mod 10^4).
   95649^3 == 44449  (mod 10^5).
  695649^3 == 444449 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((41/9+O(2^N))^(1/3), 2^N), Mod((41/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309610(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 - 41)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309610(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 41) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n

A309611 Digits of the 10-adic integer (-41/9)^(1/3).

Original entry on oeis.org

1, 5, 3, 4, 0, 3, 5, 3, 0, 3, 6, 3, 0, 2, 6, 6, 9, 7, 3, 0, 6, 0, 1, 5, 2, 1, 1, 3, 8, 4, 4, 2, 8, 1, 5, 5, 9, 6, 3, 8, 1, 7, 8, 4, 0, 7, 9, 6, 1, 0, 4, 3, 5, 8, 4, 2, 7, 9, 8, 1, 0, 1, 6, 8, 8, 2, 6, 3, 1, 3, 8, 6, 2, 7, 4, 2, 8, 2, 2, 6, 2, 8, 2, 3, 0, 2, 8, 2, 9, 6, 8, 1, 2, 6, 8, 9, 3, 7, 6, 6
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       1^3 == 1      (mod 10).
      51^3 == 51     (mod 10^2).
     351^3 == 551    (mod 10^3).
    4351^3 == 5551   (mod 10^4).
    4351^3 == 55551  (mod 10^5).
  304351^3 == 555551 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-41/9+O(2^N))^(1/3), 2^N), Mod((-41/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309611(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 + 41)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309611(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 41) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n

A309612 Digits of the 10-adic integer (-23/9)^(1/3).

Original entry on oeis.org

7, 3, 7, 0, 2, 3, 9, 5, 2, 5, 7, 6, 5, 0, 9, 7, 8, 3, 4, 4, 5, 4, 0, 2, 6, 6, 7, 3, 5, 0, 3, 9, 9, 3, 5, 0, 4, 6, 7, 6, 8, 0, 3, 6, 6, 9, 4, 3, 8, 8, 5, 2, 7, 6, 8, 3, 7, 4, 2, 0, 0, 2, 6, 4, 8, 9, 1, 5, 7, 9, 7, 3, 6, 8, 3, 1, 7, 3, 5, 1, 5, 6, 5, 4, 0, 4, 6, 1, 0, 1, 3, 4, 2, 0, 8, 2, 7, 2, 3, 8
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       7^3 == 3      (mod 10).
      37^3 == 53     (mod 10^2).
     737^3 == 553    (mod 10^3).
     737^3 == 5553   (mod 10^4).
   20737^3 == 55553  (mod 10^5).
  320737^3 == 555553 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-23/9+O(2^N))^(1/3), 2^N), Mod((-23/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309612(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 + 23)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309612(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 23) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n

A309613 Digits of the 10-adic integer (13/9)^(1/3).

Original entry on oeis.org

3, 9, 6, 9, 6, 6, 2, 5, 6, 6, 5, 7, 4, 8, 2, 6, 1, 5, 2, 3, 5, 4, 9, 5, 1, 2, 1, 5, 3, 6, 9, 7, 1, 6, 7, 5, 5, 3, 7, 6, 4, 9, 5, 3, 1, 7, 9, 8, 0, 4, 4, 5, 7, 1, 2, 1, 3, 3, 4, 9, 1, 0, 1, 7, 6, 1, 9, 8, 0, 4, 1, 3, 7, 6, 7, 1, 2, 2, 0, 1, 1, 5, 4, 9, 2, 5, 2, 8, 9, 7, 5, 0, 9, 1, 4, 5, 4, 9, 7, 3
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       3^3 == 7      (mod 10).
      93^3 == 57     (mod 10^2).
     693^3 == 557    (mod 10^3).
    9693^3 == 5557   (mod 10^4).
   69693^3 == 55557  (mod 10^5).
  669693^3 == 555557 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((13/9+O(2^N))^(1/3), 2^N), Mod((13/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309613(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 13)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309613(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 13) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309614 Digits of the 10-adic integer (31/9)^(1/3).

Original entry on oeis.org

9, 1, 9, 8, 8, 1, 3, 3, 5, 8, 3, 9, 6, 0, 0, 9, 0, 6, 1, 9, 2, 8, 3, 4, 4, 7, 9, 1, 1, 5, 3, 2, 0, 1, 6, 9, 3, 2, 9, 2, 5, 9, 4, 0, 0, 4, 7, 9, 3, 2, 1, 0, 2, 1, 2, 7, 8, 7, 9, 2, 5, 1, 1, 5, 6, 3, 9, 3, 1, 7, 8, 5, 7, 1, 3, 2, 9, 4, 2, 5, 0, 2, 2, 4, 1, 5, 4, 0, 4, 2, 1, 5, 2, 0, 5, 5, 6, 2, 0, 8
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2019

Keywords

Examples

			       9^3 == 9      (mod 10).
      19^3 == 59     (mod 10^2).
     919^3 == 559    (mod 10^3).
    8919^3 == 5559   (mod 10^4).
   88919^3 == 55559  (mod 10^5).
  188919^3 == 555559 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((31/9+O(2^N))^(1/3), 2^N), Mod((31/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309614(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 - 31)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309614(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 31) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309640 Digits of the 10-adic integer (-17/3)^(1/3).

Original entry on oeis.org

1, 2, 8, 3, 7, 1, 3, 3, 7, 8, 5, 8, 6, 3, 1, 0, 4, 5, 4, 9, 8, 0, 0, 8, 7, 1, 1, 0, 6, 8, 8, 2, 3, 0, 0, 7, 4, 7, 4, 7, 0, 4, 3, 0, 7, 9, 9, 8, 2, 6, 5, 4, 6, 8, 7, 6, 7, 2, 6, 8, 4, 4, 5, 4, 7, 5, 3, 3, 1, 7, 4, 3, 3, 3, 1, 9, 9, 0, 9, 0, 1, 1, 2, 9, 3, 8, 3, 8, 4, 1, 8, 7, 5, 7, 4, 9, 6, 7, 2, 7
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2019

Keywords

Examples

			       1^3 == 1      (mod 10).
      21^3 == 61     (mod 10^2).
     821^3 == 661    (mod 10^3).
    3821^3 == 6661   (mod 10^4).
   73821^3 == 66661  (mod 10^5).
  173821^3 == 666661 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-17/3+O(2^N))^(1/3), 2^N), Mod((-17/3+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309640(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 3 * a ** 3 + 17) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309640(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 3 * b(n-1)^3 + 17 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309641 Digits of the 10-adic integer (-11/3)^(1/3).

Original entry on oeis.org

7, 6, 7, 7, 4, 1, 3, 1, 6, 8, 2, 6, 7, 3, 8, 9, 9, 8, 6, 7, 4, 6, 6, 4, 4, 4, 9, 1, 1, 0, 9, 0, 8, 2, 6, 7, 0, 5, 6, 0, 0, 1, 6, 6, 9, 8, 5, 7, 2, 3, 0, 4, 8, 4, 0, 6, 7, 4, 6, 2, 6, 8, 5, 1, 0, 2, 9, 8, 0, 8, 8, 5, 8, 5, 2, 5, 0, 9, 2, 2, 8, 7, 5, 0, 6, 5, 6, 1, 9, 1, 8, 1, 0, 1, 6, 4, 4, 8, 0, 7
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2019

Keywords

Examples

			       7^3 == 3      (mod 10).
      67^3 == 63     (mod 10^2).
     767^3 == 663    (mod 10^3).
    7767^3 == 6663   (mod 10^4).
   47767^3 == 66663  (mod 10^5).
  147767^3 == 666663 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-11/3+O(2^N))^(1/3), 2^N), Mod((-11/3+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309641(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 + 11)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309641(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309642 Digits of the 10-adic integer (7/3)^(1/3).

Original entry on oeis.org

9, 8, 9, 5, 3, 2, 3, 2, 4, 1, 6, 2, 9, 4, 0, 2, 1, 9, 1, 1, 8, 3, 0, 8, 2, 5, 0, 7, 5, 0, 5, 2, 5, 3, 6, 7, 4, 5, 2, 9, 9, 0, 0, 7, 2, 2, 4, 5, 9, 7, 0, 1, 7, 6, 9, 4, 0, 1, 7, 0, 7, 0, 6, 9, 8, 1, 5, 9, 7, 0, 8, 2, 8, 6, 8, 0, 4, 1, 8, 7, 5, 9, 6, 4, 7, 2, 7, 6, 4, 4, 4, 3, 4, 0, 0, 5, 8, 8, 9, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2019

Keywords

Examples

			       9^3 == 9      (mod 10).
      89^3 == 69     (mod 10^2).
     989^3 == 669    (mod 10^3).
    5989^3 == 6669   (mod 10^4).
   35989^3 == 66669  (mod 10^5).
  235989^3 == 666669 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((7/3+O(2^N))^(1/3), 2^N), Mod((7/3+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309642(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 3 * a ** 3 - 7) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309642(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * b(n-1)^3 - 7 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A309643 Digits of the 10-adic integer (-61/9)^(1/3).

Original entry on oeis.org

1, 9, 4, 9, 4, 5, 2, 8, 0, 8, 3, 9, 0, 1, 4, 2, 8, 9, 2, 6, 8, 9, 0, 4, 8, 5, 0, 0, 4, 2, 0, 6, 9, 8, 8, 0, 9, 8, 5, 8, 5, 9, 3, 5, 5, 8, 1, 9, 9, 8, 2, 3, 0, 8, 4, 6, 1, 8, 5, 7, 3, 2, 8, 6, 6, 0, 1, 9, 5, 4, 6, 2, 7, 4, 7, 2, 4, 4, 5, 3, 8, 9, 9, 7, 7, 6, 7, 9, 2, 6, 5, 7, 2, 2, 8, 9, 6, 8, 9, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2019

Keywords

Examples

			       1^3 == 1      (mod 10).
      91^3 == 71     (mod 10^2).
     491^3 == 771    (mod 10^3).
    9491^3 == 7771   (mod 10^4).
   49491^3 == 77771  (mod 10^5).
  549491^3 == 777771 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-61/9+O(2^N))^(1/3), 2^N), Mod((-61/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309643(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 + 61)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309643(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 61) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.
Previous Showing 21-30 of 35 results. Next