A330122
MM-numbers of MM-normalized multiset partitions.
Original entry on oeis.org
1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 63, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 175, 183, 189, 195, 223, 225, 243, 245, 247, 259, 265, 267, 273, 281, 285, 311, 315, 329, 333, 339, 343
Offset: 1
The sequence of all MM-normalized multiset partitions together with their MM-numbers begins:
1: 0 57: {1}{111} 151: {1122}
3: {1} 63: {1}{1}{11} 159: {1}{1111}
7: {11} 81: {1}{1}{1}{1} 161: {11}{22}
9: {1}{1} 89: {1112} 165: {1}{2}{3}
13: {12} 91: {11}{12} 169: {12}{12}
15: {1}{2} 95: {2}{111} 171: {1}{1}{111}
19: {111} 105: {1}{2}{11} 175: {2}{2}{11}
21: {1}{11} 111: {1}{112} 183: {1}{122}
27: {1}{1}{1} 113: {123} 189: {1}{1}{1}{11}
35: {2}{11} 117: {1}{1}{12} 195: {1}{2}{12}
37: {112} 131: {11111} 223: {11112}
39: {1}{12} 133: {11}{111} 225: {1}{1}{2}{2}
45: {1}{1}{2} 135: {1}{1}{1}{2} 243: {1}{1}{1}{1}{1}
49: {11}{11} 141: {1}{23} 245: {2}{11}{11}
53: {1111} 147: {1}{11}{11} 247: {12}{111}
Non-isomorphic multiset partitions are
A007716.
Other fixed points:
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mmnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],mmnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[SortBy[brute[m,1],Map[Times@@Prime/@#&,#,{0,1}]&]]];
brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==mmnorm[primeMS/@primeMS[#]]&]
A055884
Euler transform of partition triangle A008284.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1
From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
1
1 2
1 2 3
1 4 4 5
1 4 8 7 7
1 6 12 16 12 11
1 6 17 25 28 19 15
1 8 22 43 49 48 30 22
1 8 30 58 87 88 77 45 30
...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
{{5}} {{1,4}} {{1,1,3}} {{1,1,1,2}} {{1,1,1,1,1}}
{{2,3}} {{1,2,2}} {{1},{1,1,2}} {{1},{1,1,1,1}}
{{1},{4}} {{1},{1,3}} {{1,1},{1,2}} {{1,1},{1,1,1}}
{{2},{3}} {{1},{2,2}} {{2},{1,1,1}} {{1},{1},{1,1,1}}
{{2},{1,2}} {{1},{1},{1,2}} {{1},{1,1},{1,1}}
{{3},{1,1}} {{1},{2},{1,1}} {{1},{1},{1},{1,1}}
{{1},{1},{3}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}}
{{1},{2},{2}}
(End)
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)
A317794
Number of non-isomorphic set-systems on n vertices with no singletons.
Original entry on oeis.org
1, 1, 2, 8, 180, 612032, 200253854316544, 263735716028826427534807159537664, 5609038300883759793482640992086670066760184863720423808367168537493504
Offset: 0
Non-isomorphic representatives of the a(3) = 8 set-systems:
0,
{12}, {123},
{12}{13}, {12}{123},
{12}{13}{23}, {12}{13}{123},
{12}{13}{23}{123}.
Cf.
A000088,
A000612,
A003180,
A007716,
A055621,
A283877,
A300913,
A306005,
A317533,
A317757,
A319876,
A000616,
A000370.
-
sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Or[Length[#]==0,Union@@#==Range[Max@@Union@@#]]&]]],{n,4}]
(* second program *)
Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2,n}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length]/n!,{prm,Permutations[Range[n]]}],{n,6}] (* Gus Wiseman, Dec 12 2018 *)
A318565
Number of multiset partitions of multiset partitions of strongly normal multisets of size n.
Original entry on oeis.org
1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1
The a(2) = 6 multiset partitions of multiset partitions:
{{{1,1}}}
{{{1,2}}}
{{{1},{1}}}
{{{1},{2}}}
{{{1}},{{1}}}
{{{1}},{{2}}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020
A330227
Number of non-isomorphic fully chiral multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 7, 16, 49, 144, 447, 1417, 4707
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 16 multiset partitions:
{1} {11} {111} {1111}
{1}{1} {122} {1222}
{1}{11} {1}{111}
{1}{22} {11}{11}
{2}{12} {1}{122}
{1}{1}{1} {1}{222}
{1}{2}{2} {12}{22}
{1}{233}
{2}{122}
{1}{1}{11}
{1}{1}{22}
{1}{2}{22}
{1}{3}{23}
{2}{2}{12}
{1}{1}{1}{1}
{1}{2}{2}{2}
MM-numbers of these multiset partitions are the odd terms of
A330236.
Non-isomorphic costrict (or T_0) multiset partitions are
A316980.
Non-isomorphic achiral multiset partitions are
A330223.
BII-numbers of fully chiral set-systems are
A330226.
Fully chiral partitions are counted by
A330228.
Fully chiral covering set-systems are
A330229.
Fully chiral factorizations are
A330235.
A322114
Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235
Offset: 0
Triangle begins:
1
1 1
0 1 1
0 1 3 2
0 0 3 6 3
0 0 2 11 14 6
0 0 1 13 35 33 11
Non-isomorphic representatives of the graphs counted in row 4:
{{2}{3}{12}{13}} {{4}{12}{23}{34}} {{13}{24}{35}{45}}
{{2}{3}{13}{23}} {{4}{13}{23}{34}} {{14}{25}{35}{45}}
{{3}{12}{13}{23}} {{4}{13}{24}{34}} {{15}{25}{35}{45}}
{{4}{14}{24}{34}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
-
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019
A318564
Number of multiset partitions of multiset partitions of normal multisets of size n.
Original entry on oeis.org
1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
Offset: 1
The a(2) = 6 multiset partitions of multiset partitions:
{{{1,1}}}
{{{1,2}}}
{{{1},{1}}}
{{{1},{2}}}
{{{1}},{{1}}}
{{{1}},{{2}}}
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]
-
\\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021
A321449
Regular triangle read by rows where T(n,k) is the number of twice-partitions of n with a combined total of k parts.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 5, 5, 0, 1, 4, 8, 8, 7, 0, 1, 6, 13, 19, 16, 11, 0, 1, 6, 17, 27, 32, 24, 15, 0, 1, 8, 24, 47, 61, 62, 41, 22, 0, 1, 8, 30, 63, 99, 111, 100, 61, 30, 0, 1, 10, 38, 94, 158, 209, 210, 170, 95, 42, 0, 1, 10, 45, 119, 229, 328, 382, 348, 259, 136, 56
Offset: 0
Triangle begins:
1
0 1
0 1 2
0 1 2 3
0 1 4 5 5
0 1 4 8 8 7
0 1 6 13 19 16 11
0 1 6 17 27 32 24 15
0 1 8 24 47 61 62 41 22
0 1 8 30 63 99 111 100 61 30
The sixth row {0, 1, 6, 13, 19, 16, 11} counts the following twice-partitions:
(6) (33) (222) (2211) (21111) (111111)
(42) (321) (3111) (1111)(2) (111)(111)
(51) (411) (111)(3) (111)(21) (1111)(11)
(3)(3) (21)(3) (211)(2) (21)(111) (11111)(1)
(4)(2) (22)(2) (21)(21) (211)(11) (11)(11)(11)
(5)(1) (31)(2) (22)(11) (2111)(1) (111)(11)(1)
(3)(21) (221)(1) (11)(11)(2) (1111)(1)(1)
(32)(1) (3)(111) (111)(2)(1) (11)(11)(1)(1)
(4)(11) (31)(11) (11)(2)(11) (111)(1)(1)(1)
(41)(1) (311)(1) (2)(11)(11) (11)(1)(1)(1)(1)
(2)(2)(2) (11)(2)(2) (21)(11)(1) (1)(1)(1)(1)(1)(1)
(3)(2)(1) (2)(11)(2) (211)(1)(1)
(4)(1)(1) (21)(2)(1) (11)(2)(1)(1)
(2)(2)(11) (2)(11)(1)(1)
(22)(1)(1) (21)(1)(1)(1)
(3)(11)(1) (2)(1)(1)(1)(1)
(31)(1)(1)
(2)(2)(1)(1)
(3)(1)(1)(1)
Cf.
A000219,
A001970,
A007716,
A008284,
A055884,
A289501,
A317449,
A317532,
A317533,
A320801,
A320808.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
g(n, i-1)+ `if`(i>n, 0, expand(g(n-i, i)*x)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
b(n, i-1)+ `if`(i>n, 0, expand(b(n-i, i)*g(i$2))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 11 2018
-
Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],Length[Join@@#]==k&],{ptn,IntegerPartitions[n]}]],{n,0,10},{k,0,n}]
(* Second program: *)
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, x^n,
g[n, i - 1] + If[i > n, 0, Expand[g[n - i, i]*x]]];
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n,
b[n, i - 1] + If[i > n, 0, Expand[b[n - i, i]*g[i, i]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
A330223
Number of non-isomorphic achiral multiset partitions of weight n.
Original entry on oeis.org
1, 1, 4, 5, 12, 9, 30, 17, 52, 44, 94, 58, 211, 103, 302, 242, 552, 299, 1024, 492, 1592, 1007, 2523, 1257, 4636, 2000, 6661, 3705, 10823, 4567, 18147, 6844, 26606, 12272, 40766, 15056, 67060, 21639, 95884, 37357, 146781, 44585, 230098, 63263, 330889, 106619, 491182, 124756
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 multiset partitions:
{1} {11} {111} {1111} {11111}
{12} {123} {1122} {12345}
{1}{1} {1}{11} {1234} {1}{1111}
{1}{2} {1}{1}{1} {1}{111} {11}{111}
{1}{2}{3} {11}{11} {1}{1}{111}
{11}{22} {1}{11}{11}
{12}{12} {1}{1}{1}{11}
{1}{1}{11} {1}{1}{1}{1}{1}
{1}{2}{12} {1}{2}{3}{4}{5}
{1}{1}{1}{1}
{1}{1}{2}{2}
{1}{2}{3}{4}
Non-isomorphic representatives of the a(6) = 30 multiset partitions:
{111111} {1}{11111} {1}{1}{1111} {1}{1}{1}{111} {1}{1}{1}{1}{11}
{111222} {11}{1111} {1}{11}{111} {1}{1}{11}{11} {1}{1}{2}{2}{12}
{112233} {111}{111} {11}{11}{11} {1}{2}{11}{22}
{123456} {111}{222} {11}{12}{22} {1}{2}{12}{12}
{112}{122} {11}{22}{33} {1}{2}{3}{123} {1}{1}{1}{1}{1}{1}
{12}{1122} {1}{2}{1122} {1}{1}{1}{2}{2}{2}
{123}{123} {12}{12}{12} {1}{1}{2}{2}{3}{3}
{12}{13}{23} {1}{2}{3}{4}{5}{6}
Achiral set-systems are counted by
A083323.
BII-numbers of achiral set-systems are
A330217.
Achiral integer partitions are counted by
A330224.
Non-isomorphic fully chiral multiset partitions are
A330227.
MM-numbers of achiral multisets of multisets are
A330232.
Achiral factorizations are
A330234.
A317795
Number of non-isomorphic set-systems spanning n vertices with no singletons.
Original entry on oeis.org
1, 0, 1, 6, 172, 611852, 200253853704512, 263735716028826427334553305221120, 5609038300883759793482640992086670066496449147691597380832361377955840
Offset: 0
Non-isomorphic representatives of the a(3) = 6 set-systems:
{123}
{12}{13}
{12}{123}
{12}{13}{23}
{12}{13}{123}
{12}{13}{23}{123}
Cf.
A000088,
A000612,
A003180,
A007716,
A055621,
A283877,
A300913,
A306005,
A317533,
A317757,
A319876.
-
sysnorm[{}]:={};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Union@@#==Range[n]&]]],{n,4}]
Comments