cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A364907 Number of ways to write n as a nonnegative linear combination of an integer partition of n.

Original entry on oeis.org

1, 1, 4, 13, 50, 179, 696, 2619, 10119, 38867, 150407, 582065, 2260367, 8786919, 34225256, 133471650, 521216494, 2037608462, 7974105052, 31235316275, 122457794193, 480473181271, 1886555402750, 7412471695859, 29142658077266, 114643347181003, 451237737215201
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(0) = 1 through a(3) = 13 ways:
  0  1*1  1*2      1*3
          0*1+2*1  0*2+3*1
          1*1+1*1  1*2+1*1
          2*1+0*1  0*1+0*1+3*1
                   0*1+1*1+2*1
                   0*1+2*1+1*1
                   0*1+3*1+0*1
                   1*1+0*1+2*1
                   1*1+1*1+1*1
                   1*1+2*1+0*1
                   2*1+0*1+1*1
                   2*1+1*1+0*1
                   3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A000041.
A finer version is A364906.
The version for compositions is A364908, strict A364909.
Using just strict partitions we get A364910, main diagonal of A364916.
Main diagonal of A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[n]}]],{n,0,5}]

Formula

a(n) = Sum_{m:A056239(m)=n} A364906(m).
a(n) = A364912(2n,n).
a(n) = A365004(n,n).

Extensions

a(9)-a(26) from Alois P. Heinz, Jan 28 2024

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Comments

In other words, partitions whose parts are not disjoint from their first differences.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
  78: {1,2,6}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

For all differences of pairs the complement is A364347, counted by A364345.
For all differences of pairs we have A364348, counted by A363225.
Subsets of {1..n} of this type are counted by A364466, complement A364463.
These partitions are counted by A364467, complement A363260.
The strict case is A364536, complement A364464.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A045691 Number of binary words of length n with autocorrelation function 2^(n-1)+1.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 19, 41, 77, 159, 307, 625, 1231, 2481, 4921, 9883, 19689, 39455, 78751, 157661, 315015, 630337, 1260049, 2520723, 5040215, 10081661, 20160841, 40324163, 80643405, 161291731, 322573579, 645157041, 1290294393, 2580608475, 5161177495
Offset: 0

Views

Author

Torsten Sillke (torsten.sillke(AT)lhsystems.com)

Keywords

Comments

From Gus Wiseman, Jan 22 2022: (Start)
Also the number of subsets of {1..n} containing n but without adjacent elements of quotient 1/2. The Heinz numbers of these sets are a subset of the squarefree terms of A320340. For example, the a(1) = 1 through a(6) = 19 subsets are:
{1} {2} {3} {4} {5} {6}
{1,3} {1,4} {1,5} {1,6}
{2,3} {3,4} {2,5} {2,6}
{1,3,4} {3,5} {4,6}
{2,3,4} {4,5} {5,6}
{1,3,5} {1,4,6}
{1,4,5} {1,5,6}
{2,3,5} {2,5,6}
{3,4,5} {3,4,6}
{1,3,4,5} {3,5,6}
{2,3,4,5} {4,5,6}
{1,3,4,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
(End)

Crossrefs

If a(n) counts subsets of {1..n} with n and without adjacent quotients 1/2:
- The version with quotients <= 1/2 is A018819, partitions A000929.
- The version with quotients < 1/2 is A040039, partitions A342098.
- The version with quotients >= 1/2 is A045690(n+1), partitions A342094.
- The version with quotients > 1/2 is A045690, partitions A342096.
- Partitions of this type are counted by A350837, ranked by A350838.
- Strict partitions of this type are counted by A350840.
- For differences instead of quotients we have A350842, strict A350844.
- Partitions not of this type are counted by A350846, ranked by A350845.
A000740 = relatively prime subsets of {1..n} containing n.
A002843 = compositions with all adjacent quotients >= 1/2.
A050291 = double-free subsets of {1..n}.
A154402 = partitions with all adjacent quotients 2.
A308546 = double-closed subsets of {1..n}, with maximum: shifted right.
A323092 = double-free integer partitions, ranked by A320340, strict A120641.
A326115 = maximal double-free subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]!=1/2,{i,2,Length[#]}]&]],{n,0,15}] (* Gus Wiseman, Jan 22 2022 *)

Formula

a(2*n-1) = 2*a(2*n-2) - a(n) for n >= 2; a(2*n) = 2*a(2*n-1) + a(n) for n >= 2.

Extensions

More terms from Sean A. Irvine, Mar 18 2021

A319613 a(n) = prime(n) * prime(2n).

Original entry on oeis.org

6, 21, 65, 133, 319, 481, 731, 1007, 1403, 2059, 2449, 3293, 4141, 4601, 5311, 6943, 8201, 9211, 10921, 12283, 13213, 15247, 16517, 19847, 22213, 24139, 25853, 28141, 29539, 31753, 37211, 40741, 43429, 46843, 52001, 54209, 58561, 62429, 66299, 70757, 75359
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (p-> p(n)*p(2*n))(ithprime):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 08 2019
  • Mathematica
    Table[Prime[n]*Prime[2*n],{n,50}]
  • PARI
    a(n) = prime(n)*prime(2*n) \\ Felix Fröhlich, Jan 09 2019

A350845 Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 144, 147, 150, 156, 162, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258, 260, 264, 266, 270
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at least two adjacent prime indices of quotient 1/2.

Examples

			The terms and corresponding partitions begin:
   6: (2,1)
  12: (2,1,1)
  18: (2,2,1)
  21: (4,2)
  24: (2,1,1,1)
  30: (3,2,1)
  36: (2,2,1,1)
  42: (4,2,1)
  48: (2,1,1,1,1)
  54: (2,2,2,1)
  60: (3,2,1,1)
  63: (4,2,2)
  65: (6,3)
  66: (5,2,1)
  72: (2,2,1,1,1)
  78: (6,2,1)
  84: (4,2,1,1)
  90: (3,2,2,1)
  96: (2,1,1,1,1,1)
		

Crossrefs

The complement is A350838, counted by A350837.
The strict complement is counted by A350840.
These partitions are counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A325160 ranks strict partitions with no successions, counted by A003114.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]

A350846 Number of integer partitions of n with at least two adjacent parts of quotient 2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(3) = 1 through a(9) = 12 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (521)      (621)
                       (2211)   (3211)    (3221)     (3321)
                       (21111)  (22111)   (4211)     (4221)
                                (211111)  (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

The complement is counted by A350837, strict A350840.
The complimentary additive version is A350842, strict A350844.
These partitions are ranked by A350845, complement A350838.
A000041 = integer partitions.
A323092 = double-free integer partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]

A364906 Number of ways to write A056239(n) as a nonnegative linear combination of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 10, 3, 2, 1, 9, 1, 2, 1, 35, 1, 6, 1, 9, 2, 2, 1, 34, 3, 2, 10, 10, 1, 7, 1, 126, 1, 2, 1, 30, 1, 2, 2, 39, 1, 6, 1, 11, 3, 2, 1, 130, 3, 6, 1, 12, 1, 20, 1, 46, 2, 2, 1, 31, 1, 2, 9, 462, 2, 7, 1, 13, 1, 6, 1, 120, 1, 2, 4, 14, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
Conjecture: Positions of 1's are numbers whose distinct divisors all have different GCDs of prime indices, listed by A319319, counted by A319318.

Examples

			The a(2) = 1 through a(10) = 2 ways:
  1*1  1*2  0*1+2*1  1*3  1*1+1*2  1*4  0*1+0*1+3*1  0*2+2*2  1*1+1*3
            1*1+1*1       3*1+0*2       0*1+1*1+2*1  1*2+1*2  4*1+0*3
            2*1+0*1                     0*1+2*1+1*1  2*2+0*2
                                        0*1+3*1+0*1
                                        1*1+0*1+2*1
                                        1*1+1*1+1*1
                                        1*1+2*1+0*1
                                        2*1+0*1+1*1
                                        2*1+1*1+0*1
                                        3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A000012.
Positions of 1's appear to be A319319.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, sum A056239.
A364910 counts nonnegative linear combinations of strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[combs[Total[prix[n]],prix[n]]],{n,100}]

A365068 Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 10, 16, 23, 34, 44, 67, 85, 119, 157, 210, 268, 360, 453, 592, 748, 956, 1195, 1520, 1883, 2365, 2920, 3628, 4451, 5494, 6702, 8211, 9976, 12147, 14666, 17776, 21389, 25774, 30887, 37035, 44224, 52819, 62836, 74753, 88614, 105062, 124160
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

These may be called "non-binary nonnegative combination-full" partitions.
Does not necessarily include all non-strict partitions (A047967).

Examples

			The partition (5,4,3,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(15).
The partition (6,4,3,2) has 6 = 1*2 + 1*4, so is counted under a(15). The combinations 6 = 2*3 = 3*2 and 4 = 2*2 can also be used.
The a(3) = 1 through a(8) = 16 partitions:
  (21)  (31)   (41)    (42)     (61)      (62)
        (211)  (221)   (51)     (331)     (71)
               (311)   (321)    (421)     (422)
               (2111)  (411)    (511)     (431)
                       (2211)   (2221)    (521)
                       (3111)   (3211)    (611)
                       (21111)  (4111)    (3221)
                                (22111)   (3311)
                                (31111)   (4211)
                                (211111)  (5111)
                                          (22211)
                                          (32111)
                                          (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The complement for sums instead of combinations is A237667, binary A236912.
For sums instead of combinations we have A237668, binary A237113.
The strict case is A364839, complement A364350.
Allowing equal parts in the combination gives A364913.
For subsets instead of partitions we have A364914, complement A326083.
The complement is A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A323092 counts double-free partitions, ranks A320340.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,Or@@Table[combs[ptn[[k]], DeleteCases[ptn,ptn[[k]]]]!={}, {k,Length[ptn]}]]]],{n,0,5}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365068(n):
        if n <= 1: return 0
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
        for p in partitions(n,k=n-1):
            s = set(p)
            if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 20 2023

A326115 Number of maximal double-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 12, 12, 12, 24, 24, 32, 32, 64, 64, 64, 64, 128, 128, 192, 192, 384, 384, 384, 384, 768, 768, 960, 960, 1920, 1920, 1920, 1920, 3840, 3840, 5760, 5760, 11520, 11520, 11520, 11520, 23040, 23040, 30720, 30720
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

A set is double-free if no element is twice any other element.

Examples

			The a(1) = 1 through a(9) = 6 sets:
  {1}  {1}  {13}  {23}   {235}   {235}   {2357}   {13457}  {134579}
       {2}  {23}  {134}  {1345}  {256}   {2567}   {13578}  {135789}
                                 {1345}  {13457}  {14567}  {145679}
                                 {1456}  {14567}  {15678}  {156789}
                                                  {23578}  {235789}
                                                  {25678}  {256789}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,2*#]=={}&]]],{n,0,10}]

Formula

From Charlie Neder, Jun 11 2019: (Start)
a(n) = Product {k < n/2} A000931(8+floor(log_2(n/(2k+1)))).
a(2k+1) = a(2k), a(8k+4) = a(8k+3). (End)

Extensions

a(16)-a(49) from Charlie Neder, Jun 11 2019
Previous Showing 31-40 of 41 results. Next