cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 162, 250, 256, 288, 324, 500, 512, 576, 648, 729, 1000, 1024, 1125, 1152, 1296, 1458, 2000, 2048, 2250, 2304, 2401, 2592, 2916, 4000, 4096, 4500, 4608, 4802, 5184, 5832, 6561, 8000, 8192, 9000, 9216
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A062457.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  162: {1,2,2,2,2}
  250: {1,3,3,3}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Range of values of A090884.
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[k,PrimePi[p]]]&]
    v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* Amiram Eldar, Sep 30 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - Amiram Eldar, Sep 30 2020

A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.

Original entry on oeis.org

1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
      1: {}
      2: {1}
      9: {2,2}
     12: {1,1,2}
     40: {1,1,1,3}
    112: {1,1,1,1,4}
    125: {3,3,3}
    352: {1,1,1,1,1,5}
    360: {1,1,1,2,2,3}
    675: {2,2,2,3,3}
    832: {1,1,1,1,1,1,6}
   1008: {1,1,1,1,2,2,4}
   2176: {1,1,1,1,1,1,1,7}
   2401: {4,4,4,4}
   3168: {1,1,1,1,1,2,2,5}
   3969: {2,2,2,2,4,4}
   4864: {1,1,1,1,1,1,1,1,8}
   7488: {1,1,1,1,1,1,2,2,6}
  11776: {1,1,1,1,1,1,1,1,1,9}
  14000: {1,1,1,1,3,3,3,4}
  19584: {1,1,1,1,1,1,1,2,2,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]

A324570 Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 100, 112, 125, 240, 250, 352, 360, 392, 405, 540, 600, 672, 675, 810, 832, 900, 1008, 1125, 1350, 1372, 1500, 1512, 1701, 1875, 1936, 2112, 2176, 2240, 2250, 2268, 2352, 2401, 3168, 3402, 3528, 3750, 3969, 4752, 4802, 4864, 4992, 5292
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    9: {2,2}
   12: {1,1,2}
   18: {1,2,2}
   40: {1,1,1,3}
  100: {1,1,3,3}
  112: {1,1,1,1,4}
  125: {3,3,3}
  240: {1,1,1,1,2,3}
  250: {1,3,3,3}
  352: {1,1,1,1,1,5}
  360: {1,1,1,2,2,3}
  392: {1,1,1,4,4}
  405: {2,2,2,2,3}
  540: {1,1,2,2,2,3}
  600: {1,1,1,2,3,3}
  672: {1,1,1,1,1,2,4}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
    select(q, [$1..5600])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[1000],Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]

Formula

A066328(a(n)) = A001222(a(n)).

A353390 Number of compositions of n whose own run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 2, 2, 8, 17, 26, 43, 77, 129, 210, 351, 569
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(9) = 8 compositions (empty columns indicated by dots):
  ()  (1)  .  .  (22)  (122)  (1122)  (11221)  (21122)  (333)
                       (221)  (1221)  (12211)  (22112)  (22113)
                              (2211)                    (22122)
                                                        (31122)
                                                        (121122)
                                                        (122112)
                                                        (211221)
                                                        (221121)
For example, the composition y = (2,2,3,3,1) has run-lengths (2,2,1), which form a (non-consecutive) subsequence, so y is counted under a(11).
		

Crossrefs

The version for partitions is A325702.
The recursive version is A353391, ranked by A353431.
The consecutive case is A353392, ranked by A353432.
These compositions are ranked by A353402.
The reverse version is A353403.
The recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A047966 counts uniform partitions, compositions A329738.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.
A353400 counts compositions with all run-lengths > 2.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], MemberQ[Subsets[#],Length/@Split[#]]&]],{n,0,15}]

A115584 Number of partitions of n in which each part k occurs more than k times.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 7, 7, 8, 8, 12, 9, 15, 14, 17, 18, 24, 21, 29, 29, 35, 35, 46, 42, 56, 54, 65, 67, 81, 77, 98, 95, 115, 114, 139, 135, 164, 165, 190, 195, 230, 225, 272, 271, 313, 321, 370, 374, 433, 441, 501, 514, 589, 592, 681, 698, 778, 809, 907
Offset: 0

Views

Author

Vladeta Jovovic, Mar 09 2006

Keywords

Comments

The Heinz numbers of these partitions are given by A325127. - Gus Wiseman, Apr 02 2019

Examples

			a(2) = 1 because we have [1,1]; a(10) = 4 because we have [2,2,2,2,2], [2,2,2,2,1,1], [2,2,2,1,1,1,1] and [1^10].
From _Gus Wiseman_, Apr 02 2019: (Start)
The initial terms count the following integer partitions:
   0: ()
   2: (11)
   3: (111)
   4: (1111)
   5: (11111)
   6: (222)
   6: (111111)
   7: (1111111)
   8: (2222)
   8: (22211)
   8: (11111111)
   9: (222111)
   9: (111111111)
  10: (22222)
  10: (222211)
  10: (2221111)
  10: (1111111111)
  11: (2222111)
  11: (22211111)
  11: (11111111111)
  12: (3333)
  12: (222222)
  12: (2222211)
  12: (22221111)
  12: (222111111)
  12: (111111111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=product((1-x^k+x^(k*(k+1)))/(1-x^k),k=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=0..70); # Emeric Deutsch, Mar 12 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1), j=i+1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 09 2017
  • Mathematica
    CoefficientList[ Series[ Product[(1 - x^k + x^(k(k + 1)))/(1 - x^k), {k, 14}], {x, 0, 66}], x] (* Robert G. Wilson v, Mar 12 2006 *)
    Table[Length[Select[IntegerPartitions[n],And@@Table[Count[#,i]>i,{i,Union[#]}]&]],{n,0,30}] (* Gus Wiseman, Apr 02 2019 *)

Formula

G.f.: Product_{k>=1} (1-x^k+x^(k*(k+1)))/(1-x^k).

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Mar 12 2006

A324588 Heinz numbers of integer partitions of n into perfect squares (A001156).

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   7: {4}
   8: {1,1,1}
  14: {1,4}
  16: {1,1,1,1}
  23: {9}
  28: {1,1,4}
  32: {1,1,1,1,1}
  46: {1,9}
  49: {4,4}
  53: {16}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  92: {1,1,9}
  97: {25}
  98: {1,4,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Sqrt[PrimePi[p]]]]&]

A353391 Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 22, 38, 45, 87, 93
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14):
  (9)       (A)       (B)       (C)       (D)       (E)
  (333)     (2233)    (141122)  (2244)    (161122)  (2255)
  (121122)  (3322)    (221123)  (4422)    (221125)  (5522)
  (221121)  (131122)  (221132)  (151122)  (221134)  (171122)
            (221131)  (221141)  (221124)  (221143)  (221126)
                      (231122)  (221142)  (221152)  (221135)
                      (321122)  (221151)  (221161)  (221153)
                                (241122)  (251122)  (221162)
                                (421122)  (341122)  (221171)
                                          (431122)  (261122)
                                          (521122)  (351122)
                                                    (531122)
                                                    (621122)
                                                    (122121122)
                                                    (221121221)
		

Crossrefs

The non-recursive version is A353390, ranked by A353402.
The non-recursive consecutive version is A353392, ranked by A353432.
The non-recursive reverse version is A353403.
The unordered version is A353426, ranked by A353393 (nonprime A353389).
The consecutive version is A353430.
These compositions are ranked by A353431.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A329738 counts uniform compositions, partitions A047966.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-length.

Programs

  • Mathematica
    yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&&yosQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yosQ]],{n,0,15}]

A353392 Number of compositions of n whose own run-lengths are a consecutive subsequence.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 2, 8, 12, 16, 20, 35, 46, 59, 81, 109, 144, 202, 282
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 0 through a(10) = 12 compositions (empty columns indicated by dots, 0 is the empty composition):
  0  1  .  .  22  122  1122  11221  21122  333     1333
                  221  2211  12211  22112  22113   2233
                                           22122   3322
                                           31122   3331
                                           121122  22114
                                           122112  41122
                                           211221  122113
                                           221121  131122
                                                   221131
                                                   311221
                                                   1211221
                                                   1221121
		

Crossrefs

The non-consecutive version for partitions is A325702.
The non-consecutive version is A353390, ranked by A353402.
The non-consecutive recursive version is A353391, ranked by A353431.
The non-consecutive reverse version is A353403.
The recursive version is A353430.
These compositions are ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||MemberQ[Join@@Table[Take[#,{i,j}],{i,Length[#]},{j,i,Length[#]}],Length/@Split[#]]&]],{n,0,15}]

A353403 Number of compositions of n whose own reversed run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 3, 2, 5, 12, 16, 30, 45, 94, 159, 285, 477, 864, 1487, 2643
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(7) = 12 compositions:
  ()  (1)  .  .  (22)   (1121)  (1113)  (1123)
                 (112)  (1211)  (1122)  (1132)
                 (211)          (1221)  (2311)
                                (2211)  (3211)
                                (3111)  (11131)
                                        (11212)
                                        (11221)
                                        (12112)
                                        (12211)
                                        (13111)
                                        (21121)
                                        (21211)
		

Crossrefs

The non-reversed version is A353390, ranked by A353402, partitions A325702.
The non-reversed recursive version is A353391, ranked by A353431.
The non-reversed consecutive case is A353392, ranked by A353432.
The non-reversed recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[Subsets[#],Reverse[Length/@Split[#]]]&]],{n,0,15}]

A324587 Heinz numbers of integer partitions of n into distinct perfect squares (A033461).

Original entry on oeis.org

1, 2, 7, 14, 23, 46, 53, 97, 106, 151, 161, 194, 227, 302, 311, 322, 371, 419, 454, 541, 622, 661, 679, 742, 827, 838, 1009, 1057, 1082, 1193, 1219, 1322, 1358, 1427, 1589, 1619, 1654, 1879, 2018, 2114, 2143, 2177, 2231, 2386, 2437, 2438, 2741, 2854, 2933
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A011757.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    7: {4}
   14: {1,4}
   23: {9}
   46: {1,9}
   53: {16}
   97: {25}
  106: {1,16}
  151: {36}
  161: {4,9}
  194: {1,25}
  227: {49}
  302: {1,36}
  311: {64}
  322: {1,4,9}
  371: {4,16}
  419: {81}
  454: {1,49}
  541: {100}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And@@Cases[FactorInteger[#],{p_,k_}:>k==1&&IntegerQ[Sqrt[PrimePi[p]]]]&]
Previous Showing 11-20 of 21 results. Next