cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 107 results. Next

A363728 Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 50, 12, 14, 33, 54, 0, 115, 0, 92, 75, 31, 99, 323, 0, 45, 162, 443, 0, 507, 0, 467, 732, 88, 0, 1551, 274, 833, 627, 1228, 0, 2035, 1556, 2859, 1152, 221, 0, 9008, 0, 295, 4835, 5358
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(8) = 1 through a(18) = 12 partitions:
  3221  .  32221  .  4332    .  3222221  43332  5443      .  433332
                     5331       3322211  53331  6442         443331
                     322221     4222211  63321  7441         533322
                     422211                     32222221     533331
                                                33222211     543321
                                                42222211     633321
                                                52222111     733311
                                                             322222221
                                                             332222211
                                                             422222211
                                                             432222111
                                                             522222111
		

Crossrefs

Non-constant partitions are counted by A144300, ranks A024619.
This is the non-constant case of A363719, ranks A363727.
These partitions have ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A329976 Number of partitions p of n such that (number of numbers in p that have multiplicity 1) > (number of numbers in p having multiplicity > 1).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 6, 9, 14, 18, 27, 38, 50, 66, 89, 113, 145, 186, 234, 297, 374, 468, 585, 737, 912, 1140, 1407, 1758, 2153, 2668, 3254, 4007, 4855, 5946, 7170, 8705, 10451, 12626, 15068, 18125, 21551, 25766, 30546, 36365, 42958, 50976, 60062, 70987
Offset: 0

Views

Author

Clark Kimberling, Feb 03 2020

Keywords

Comments

For each partition of n, let
d = number of terms that are not repeated;
r = number of terms that are repeated.
a(n) is the number of partitions such that d > r.
Also the number of integer partitions of n with median multiplicity 1. - Gus Wiseman, Mar 20 2023

Examples

			The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.
These have d > r:  6, 51, 42, 321
These have d = r:  411, 3222, 21111
These have d < r:  33, 222, 2211, 111111
Thus, a(6) = 4.
		

Crossrefs

For parts instead of multiplicities we have A027336
The complement is counted by A330001.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A237363 counts partitions with median difference 0.

Programs

  • Mathematica
    z = 30; d[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]];
    r[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[IntegerPartitions[n], p_ /; d[p] > r[p]], {n, 0, z}]

Formula

a(n) + A241274(n) + A330001(n) = A000041(n) for n >= 0.

A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 9, 4, 1, 50, 29, 14, 5, 1, 176, 99, 49, 20, 6, 1, 638, 351, 175, 76, 27, 7, 1, 2354, 1275, 637, 286, 111, 35, 8, 1, 8789, 4707, 2353, 1078, 441, 155, 44, 9, 1, 33099, 17577, 8788, 4081, 1728, 650, 209, 54, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
     1
     2     1
     5     3     1
    15     9     4     1
    50    29    14     5     1
   176    99    49    20     6     1
   638   351   175    76    27     7     1
  2354  1275   637   286   111    35     8     1
  8789  4707  2353  1078   441   155    44     9     1
Row n = 4 counts the following subsets:
  {1,7}            {2,6}        {3,5}    {4}
  {1,4,5}          {2,4,5}      {3,4,5}
  {1,4,6}          {2,4,6}      {3,4,6}
  {1,4,7}          {2,4,7}      {3,4,7}
  {1,2,6,7}        {2,3,5,6}
  {1,3,5,6}        {2,3,5,7}
  {1,3,5,7}        {2,3,4,5,6}
  {1,2,4,5,6}      {2,3,4,5,7}
  {1,2,4,5,7}      {2,3,4,6,7}
  {1,2,4,6,7}
  {1,3,4,5,6}
  {1,3,4,5,7}
  {1,3,4,6,7}
  {1,2,3,5,6,7}
  {1,2,3,4,5,6,7}
		

Crossrefs

Row sums appear to be A006134.
Column k = 1 appears to be A024718.
Column k = 2 appears to be A006134.
Column k = 3 appears to be A079309.
A000975 counts subsets with integer median, mean A327475.
A007318 counts subsets by length.
A231147 counts subsets by median, full steps A013580, by mean A327481.
A359893 and A359901 count partitions by median.
A360005(n)/2 gives the median statistic.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2n-1]],Min@@#==k&&Median[#]==n&]],{n,6},{k,n}]
  • PARI
    T(n,k) = sum(j=0, n-k, binomial(2*j+k-2, j)) \\ Andrew Howroyd, Apr 09 2023

Formula

T(n,k) = 1 + Sum_{j=1..n-k} binomial(2*j+k-2, j). - Andrew Howroyd, Apr 09 2023

A361857 Number of integer partitions of n such that the maximum is greater than twice the median.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 7, 11, 16, 25, 37, 52, 74, 101, 138, 185, 248, 325, 428, 554, 713, 914, 1167, 1476, 1865, 2336, 2922, 3633, 4508, 5562, 6854, 8405, 10284, 12536, 15253, 18489, 22376, 26994, 32507, 39038, 46802, 55963, 66817, 79582, 94643, 112315
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (411)   (511)    (521)     (522)      (622)
         (3111)  (4111)   (611)     (621)      (721)
                 (31111)  (4211)    (711)      (811)
                          (5111)    (5211)     (5221)
                          (32111)   (6111)     (5311)
                          (41111)   (33111)    (6211)
                          (311111)  (42111)    (7111)
                                    (51111)    (43111)
                                    (321111)   (52111)
                                    (411111)   (61111)
                                    (3111111)  (331111)
                                               (421111)
                                               (511111)
                                               (3211111)
                                               (4111111)
                                               (31111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10).
		

Crossrefs

For length instead of median we have A237751.
For minimum instead of median we have A237820.
The complement is counted by A361848.
The equal version is A361849, ranks A361856.
Reversing the inequality gives A361858.
Allowing equality gives A361859, ranks A361868.
These partitions have ranks A361867.
For mean instead of median we have A361907.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#>2*Median[#]&]],{n,30}]

A361864 Number of set partitions of {1..n} whose block-medians have integer median.

Original entry on oeis.org

1, 0, 3, 6, 30, 96, 461, 2000, 10727, 57092, 342348
Offset: 1

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(4) = 6 set partitions:
  {{1}}  .  {{123}}      {{1}{234}}
            {{13}{2}}    {{123}{4}}
            {{1}{2}{3}}  {{1}{2}{34}}
                         {{12}{3}{4}}
                         {{1}{24}{3}}
                         {{13}{2}{4}}
The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4).
		

Crossrefs

For mean instead of median we have A361865.
For sum instead of outer median we have A361911, means A361866.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A308037 counts set partitions with integer average block-size.
A325347 counts partitions w/ integer median, complement A307683.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}]

A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 5, 8, 10, 14, 20, 19, 26, 31, 35, 41, 55, 65, 85, 102, 118, 151, 181, 201, 236, 281, 313, 365, 424, 495, 593, 688, 825, 978, 1181, 1374, 1650, 1948, 2323, 2682, 3175, 3680, 4314, 4930, 5718, 6546, 7532, 8557, 9777, 11067, 12622
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 8 partitions:
  1   .  .  22    221   3111   .  3311    333     3331     32222
            211                   41111   32211   33211    33221
                                                  42211    44111
                                                  322111   52211
                                                  511111   322211
                                                           332111
                                                           422111
                                                           3221111
		

Crossrefs

For mean instead of median: A114638, ranks A324570.
For parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360453.
For parts instead of distinct parts: A360456, ranks A360454.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}]

A360952 Number of strict integer partitions of n with non-integer median; a(0) = 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 6, 1, 8, 4, 11, 5, 15, 10, 20, 13, 27, 22, 36, 28, 47, 43, 63, 56, 82, 79, 107, 103, 140, 141, 180, 181, 232, 242, 299, 308, 380, 402, 483, 511, 613, 656, 772, 824, 969, 1047, 1215, 1309, 1514, 1642, 1882, 2039, 2334, 2539, 2882
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2023

Keywords

Comments

All of these partitions have even length.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(0) = 1 through a(15) = 11 partitions (0 = {}, A..E = 10..14):
  0  .  .  21  .  32  .  43  .  54  4321  65    6321  76    5432  87
                  41     52     63        74          85    6431  96
                         61     72        83          94    6521  A5
                                81        92          A3    8321  B4
                                          A1          B2          C3
                                          5321        C1          D2
                                                      5431        E1
                                                      7321        6432
                                                                  7431
                                                                  7521
                                                                  9321
		

Crossrefs

The non-strict version is A307683, ranks A359912.
The non-strict complement is A325347, ranks A359908.
The strict complement is counted by A359907.
For mean instead of median we have A361391, non-strict A349156.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A067538 = partitions with integer mean, complement A102627, ranks A316413.
A359893/A359901/A359902 count partitions by median.
A360005(n)/2 ranks the median statistic.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!IntegerQ[Median[#]]&]],{n,0,30}]

Formula

a(n) = A000009(n) - A359907(n).

A361868 Positive integers > 1 whose prime indices satisfy (maximum) >= 2*(median).

Original entry on oeis.org

12, 20, 24, 28, 40, 42, 44, 48, 52, 56, 60, 63, 66, 68, 72, 76, 78, 80, 84, 88, 92, 96, 99, 102, 104, 112, 114, 116, 117, 120, 124, 126, 130, 132, 136, 138, 140, 144, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 189, 190, 192, 195
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 >= 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

The LHS is A061395 (greatest prime index).
The RHS is A360005 (twice median), distinct A360457.
The equal case is A361856, counted by A361849.
These partitions are counted by A361859.
The unequal case is A361867, counted by A361857.
The complement is counted by A361858.
A000975 counts subsets with integer median.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]>=2*Median[prix[#]]&]

A364062 Number of integer partitions of n with unique co-mode 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 6, 2, 8, 6, 9, 6, 16, 7, 21, 12, 23, 18, 39, 17, 47, 32, 59, 40, 86, 44, 110, 72, 131, 95, 188, 103, 233, 166, 288, 201, 389, 244, 490, 347, 587, 440, 794, 524, 974, 727, 1187, 903, 1547, 1106, 1908, 1459, 2303, 1826, 2979, 2198
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

These are partitions with at least one 1 but with fewer 1's than each of the other parts.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(n) partitions for n = 5, 7, 11, 13, 15:
  (221)    (331)      (551)          (661)            (771)
  (11111)  (2221)     (33221)        (4441)           (44331)
           (1111111)  (33311)        (33331)          (55221)
                      (222221)       (44221)          (442221)
                      (2222111)      (332221)         (3322221)
                      (11111111111)  (2222221)        (3333111)
                                     (22222111)       (22222221)
                                     (1111111111111)  (222222111)
                                                      (111111111111111)
		

Crossrefs

For high (or unique) mode we have A241131, ranks A360013.
For low mode we have A241131, ranks A360015.
Allowing any unique co-mode gives A362610, ranks A359178.
These partitions have ranks A364061.
Adding all 1-free partitions gives A364159, ranks A364158.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions w/ unique mode, ranks A356862, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],comodes[#]=={1}&]],{n,0,30}]

A361911 Number of set partitions of {1..n} with block-medians summing to an integer.

Original entry on oeis.org

1, 1, 3, 10, 30, 107, 479, 2249, 11173, 60144, 351086, 2171087, 14138253, 97097101, 701820663, 5303701310, 41838047938, 343716647215, 2935346815495, 25999729551523, 238473713427285, 2261375071834708, 22141326012712122, 223519686318676559, 2323959300370456901
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(4) = 10 set partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1}{234}}
                   {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{123}{4}}
                                {{124}{3}}
                                {{13}{24}}
                                {{134}{2}}
                                {{14}{23}}
                                {{1}{24}{3}}
                                {{13}{2}{4}}
                                {{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with sum 5, so is counted under a(4).
		

Crossrefs

For median instead of sum we have A361864.
For mean of means we have A361865.
For mean instead of median we have A361866.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A308037 counts set partitions with integer average block-size.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    sps[{}]:={{}}; sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]], IntegerQ[Total[Median/@#]]&]],{n,10}]

Extensions

a(12)-a(25) from Christian Sievers, Aug 26 2024
Previous Showing 71-80 of 107 results. Next