A326116
Number of subsets of {2..n} containing no products of two or more distinct elements.
Original entry on oeis.org
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
Offset: 1
The a(6) = 28 subsets:
{} {2} {2,3} {2,3,4} {2,3,4,5}
{3} {2,4} {2,3,5} {2,4,5,6}
{4} {2,5} {2,4,5} {3,4,5,6}
{5} {2,6} {2,4,6}
{6} {3,4} {2,5,6}
{3,5} {3,4,5}
{3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..47
- P. J. Cameron and P. Erdős, On the number of integers with various properties, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79.
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326117,
A308542.
-
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}]
-
a(n)={
my(recurse(k, ep)=
if(k > n, 1,
my(t = self()(k + 1, ep));
if(!bittest(ep,k),
forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i))));
t += self()(k + 1, ep);
);
t);
);
recurse(2, 2);
} \\ Andrew Howroyd, Aug 25 2019
A326491
Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0
The a(1) = 1 through a(9) = 10 subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {2,3} {2,3} {2,3} {2,3} {2,3,7} {2,5,6} {2,6,7}
{3,4} {2,5} {2,5,6} {2,5,6} {2,5,8} {3,4,5}
{3,4,5} {3,4,5} {2,6,7} {2,6,7} {3,5,7}
{4,5,6} {3,4,5} {3,4,5} {2,3,7,8}
{3,5,7} {3,5,7} {2,5,6,9}
{4,5,6,7} {2,3,7,8} {2,5,8,9}
{4,5,6,7} {4,5,6,7}
{5,6,7,8} {4,6,7,9}
{5,6,7,8,9}
Subsets without differences or quotients are
A326490.
Subsets with differences and quotients are
A326494.
Maximal subsets without differences are
A121269
Maximal subsets without quotients are
A326492.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]
A326490
Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 3, 5, 7, 12, 18, 31, 46, 72, 102, 172, 259, 428, 607, 989, 1329, 2142, 3117, 4953, 6956, 11032, 15321, 23979, 33380, 48699, 66849, 104853, 144712, 220758, 304133, 461580, 636556, 973843, 1316513, 1958828, 2585433, 3882843, 5237093, 7884277, 10555739, 15729293
Offset: 0
The a(0) = 1 through a(6) = 18 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{3,4,5} {3,5}
{4,5}
{4,6}
{5,6}
{2,5,6}
{3,4,5}
{4,5,6}
Subsets without difference are
A007865.
Maximal subsets without differences or quotients are
A326491.
Subsets without quotients are
A327591.
Subsets with differences and quotients are
A326494.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}]
-
a(n)={
my(recurse(k, b)=
if(k > n, 1,
my(t = self()(k + 1, b));
for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t)));
t += self()(k + 1, b + (1<Andrew Howroyd, Aug 25 2019
A327591
Number of subsets of {1..n} containing no quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 3, 5, 7, 13, 23, 45, 89, 137, 253, 505, 897, 1793, 3393, 6353, 9721, 19441, 35665, 71329, 129953, 247233, 477665, 955329, 1700417, 2657281, 5184001, 10368001, 19407361, 38814721, 68868353, 137736705, 260693505, 505830401, 999641601, 1882820609, 2807196673
Offset: 0
The a(0) = 1 through a(5) = 13 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
Maximal subsets without quotients are
A326492.
Subsets with quotients are
A326023.
Subsets without differences or quotients are
A326490.
Subsets without products are
A326489.
A326492
Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
Offset: 0
The a(0) = 1 through a(9) = 5 subsets:
{} {1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {23} {23} {235} {235} {2357} {23578} {23578}
{34} {345} {256} {2567} {25678} {256789}
{3456} {34567} {345678} {345678}
{456789}
Subsets with quotients are
A326023.
Subsets with quotients > 1 are
A326079.
Subsets without quotients are
A327591.
Maximal subsets without differences or quotients are
A326491.
Maximal subsets without quotients (or products) are
A326496.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}]
A326114
Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 22, 44, 76, 116, 222, 444, 788, 1576, 3068, 5740, 8556, 17112, 31752, 63504, 116176, 221104, 438472, 876944, 1569424, 2447664, 4869576, 9070920, 17022360, 34044720, 61923312, 123846624, 234698720, 462007072, 922838192, 1734564112, 2591355792, 5182711584
Offset: 0
The a(1) = 1 through a(5) = 12 subsets:
{} {} {} {} {}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326116,
A326117.
A308542
Number of subsets of {2..n} containing the product of any set of distinct elements whose product is <= n.
Original entry on oeis.org
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1184, 2368, 4448, 8056, 15008, 30016, 52736, 105472, 183424, 339840, 663616, 1327232, 2217088, 4434176, 8744320, 16559168, 30034624, 60069248, 103402112, 206804224, 379941440, 730800064, 1454649248, 2659869664, 4786282208
Offset: 1
The a(6) = 28 sets:
{} {2} {2,4} {2,3,6} {2,3,4,6} {2,3,4,5,6}
{3} {2,5} {2,4,5} {2,3,5,6}
{4} {2,6} {2,4,6} {2,4,5,6}
{5} {3,4} {2,5,6} {3,4,5,6}
{6} {3,5} {3,4,5}
{3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326116,
A326117.
-
Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]
A326082
Number of maximal sets of pairwise indivisible divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 8, 3, 3, 4, 5, 2, 7, 2, 6, 3, 3, 3, 9, 2, 3, 3, 8, 2, 7, 2, 5, 5, 3, 2, 12, 3, 5, 3, 5, 2, 8, 3, 8, 3, 3, 2, 15, 2, 3, 5, 7, 3, 7, 2, 5, 3, 7, 2, 15, 2, 3, 5, 5, 3, 7, 2, 12, 5, 3, 2, 15, 3
Offset: 1
The maximal sets of pairwise indivisible divisors of n = 1, 2, 4, 8, 12, 24, 30, 32, 36, 48, 60 are:
1 1 1 1 1 1 1 1 1 1 1
2 2 2 12 24 30 2 36 48 60
4 4 2,3 2,3 5,6 4 2,3 2,3 2,15
8 3,4 3,4 2,15 8 2,9 3,4 3,20
4,6 3,8 3,10 16 3,4 3,8 4,30
4,6 2,3,5 32 4,18 4,6 5,12
6,8 6,10,15 9,12 6,8 2,3,5
8,12 12,18 3,16 3,4,5
4,6,9 6,16 4,5,6
8,12 3,4,10
12,16 6,15,20
16,24 10,12,15
12,15,20
12,20,30
4,6,10,15
Cf.
A001055,
A051026,
A067992,
A096827,
A143824,
A285572,
A285573,
A303362,
A305148,
A305149,
A316476,
A325861,
A326023,
A326077.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Rest[Subsets[Divisors[n]]],stableQ[#,Divisible]&]]],{n,100}]
A326494
Number of subsets of {1..n} containing all differences and quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 4, 6, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 0
The a(0) = 1 through a(6) = 13 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{1,2} {3} {3} {3} {3}
{1,2} {4} {4} {4}
{1,2,3} {1,2} {5} {5}
{2,4} {1,2} {6}
{1,2,3} {2,4} {1,2}
{1,2,3,4} {1,2,3} {2,4}
{1,2,3,4} {1,2,3}
{1,2,3,4,5} {1,2,3,4}
{1,2,3,4,5}
{1,2,3,4,5,6}
Subsets with difference are
A054519.
Subsets with quotients are
A326023.
Subsets with quotients > 1 are
A326079.
Subsets without differences or quotients are
A326490.
-
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Union[Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&],Subtract@@@Select[Tuples[#,2],Greater@@#&]]]&]],{n,0,10}]
Comments