A326495
Number of subsets of {1..n} containing no sums or products of pairs of elements.
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 17, 30, 45, 71, 101, 171, 258, 427, 606, 988, 1328, 2141, 3116, 4952, 6955, 11031, 15320, 23978, 33379, 48698, 66848, 104852, 144711, 220757, 304132, 461579, 636555, 973842, 1316512, 1958827, 2585432, 3882842, 5237092, 7884276, 10555738, 15729292
Offset: 0
The a(1) = 1 through a(6) = 17 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{3,4,5} {3,5}
{4,5}
{4,6}
{5,6}
{2,5,6}
{3,4,5}
{4,5,6}
Subsets without products are
A326489.
Subsets without differences or quotients are
A326490.
Maximal subsets without sums or products are
A326497.
Subsets with sums (and products) are
A326083.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]],{n,0,10}]
A326497
Number of maximal sum-free and product-free subsets of {1..n}.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 15, 21, 26, 38, 51, 69, 89, 119, 149, 197, 261, 356, 447, 601, 781, 1003, 1293, 1714, 2228, 2931, 3697, 4843, 6258, 8187, 10273, 13445, 16894, 21953, 27469, 35842, 45410, 58948, 73939, 95199, 120593, 154510, 192995, 247966, 312642
Offset: 0
The a(2) = 1 through a(10) = 15 subsets (A = 10):
{2} {23} {23} {23} {23} {237} {256} {267} {23A}
{34} {25} {256} {256} {258} {345} {345}
{345} {345} {267} {267} {357} {34A}
{456} {345} {345} {2378} {357}
{357} {357} {2569} {38A}
{4567} {2378} {2589} {2378}
{4567} {4567} {2569}
{5678} {4679} {2589}
{56789} {267A}
{269A}
{4567}
{4679}
{479A}
{56789}
{6789A}
Sum-free and product-free subsets are
A326495.
Maximal sum-free subsets are
A121269.
Maximal product-free subsets are
A326496.
Subsets with sums (and products) are
A326083.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]
-
\\ See link for program file.
for(n=0, 37, print1(A326497(n), ", ")) \\ Andrew Howroyd, Aug 30 2019
A326078
Number of subsets of {2..n} containing all of their integer quotients > 1.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 24, 48, 72, 144, 216, 432, 552, 1104, 1656, 2592, 3936, 7872, 10056, 20112, 26688, 42320, 63480, 126960, 154800, 309600, 464400, 737568, 992160, 1984320, 2450880, 4901760, 6292800, 10197312, 15295968, 26241696, 32947488, 65894976, 98842464, 161587872, 205842528
Offset: 0
The a(6) = 24 subsets:
{} {2} {2,3} {2,3,4} {2,3,4,5} {2,3,4,5,6}
{3} {2,4} {2,3,5} {2,3,4,6}
{4} {2,5} {2,3,6} {2,3,5,6}
{5} {3,4} {2,4,5}
{6} {3,5} {3,4,5}
{4,5} {4,5,6}
{4,6}
{5,6}
Cf.
A007865,
A051026,
A054519,
A067992,
A103580,
A325860,
A325994,
A326023,
A326076,
A326079,
A326081.
-
Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]&]],{n,0,10}]
-
a(n)={
my(lim=vector(n, k, sqrtint(k)));
my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b,i) != bittest(b,k/i), return(0))); 1);
my(recurse(k, b)=
my(m=1);
for(j=max(2*k,n\2+1), min(2*k+1,n), if(accept(b,j), m*=2));
k++;
m*if(k > n\2, 1, (self()(k, b) + if(accept(b, k), self()(k, b + (1<Andrew Howroyd, Aug 30 2019
A326116
Number of subsets of {2..n} containing no products of two or more distinct elements.
Original entry on oeis.org
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
Offset: 1
The a(6) = 28 subsets:
{} {2} {2,3} {2,3,4} {2,3,4,5}
{3} {2,4} {2,3,5} {2,4,5,6}
{4} {2,5} {2,4,5} {3,4,5,6}
{5} {2,6} {2,4,6}
{6} {3,4} {2,5,6}
{3,5} {3,4,5}
{3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..47
- P. J. Cameron and P. Erdős, On the number of integers with various properties, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79.
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326117,
A308542.
-
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}]
-
a(n)={
my(recurse(k, ep)=
if(k > n, 1,
my(t = self()(k + 1, ep));
if(!bittest(ep,k),
forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i))));
t += self()(k + 1, ep);
);
t);
);
recurse(2, 2);
} \\ Andrew Howroyd, Aug 25 2019
A325710
Number of maximal subsets of {1..n} containing no products of distinct elements.
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 24, 28, 32, 32, 62, 62, 92, 102, 184, 184, 254, 254, 474, 506, 686, 686, 1172, 1172, 1792, 1906, 3568, 3794, 5326, 5326, 10282, 10618, 14822, 14822, 25564, 25564, 35304, 39432, 76888, 76888, 100574, 100574, 197870, 201622, 282014
Offset: 0
The a(1) = 1 through a(9) = 6 maximal subsets:
{1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {23} {234} {2345} {2345} {23457} {23457} {234579}
{2456} {24567} {23578} {235789}
{3456} {34567} {24567} {245679}
{25678} {256789}
{345678} {3456789}
Subsets without products of distinct elements are
A326117.
Maximal product-free subsets are
A326496.
Maximal subsets without sums of distinct elements are
A326498.
Maximal subsets without quotients are
A326492.
Maximal subsets without sums or products of distinct elements are
A326025.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}]
-
\\ See link for program file.
for(n=0, 30, print1(A325710(n), ", ")) \\ Andrew Howroyd, Aug 29 2019
A326114
Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 22, 44, 76, 116, 222, 444, 788, 1576, 3068, 5740, 8556, 17112, 31752, 63504, 116176, 221104, 438472, 876944, 1569424, 2447664, 4869576, 9070920, 17022360, 34044720, 61923312, 123846624, 234698720, 462007072, 922838192, 1734564112, 2591355792, 5182711584
Offset: 0
The a(1) = 1 through a(5) = 12 subsets:
{} {} {} {} {}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326116,
A326117.
A308542
Number of subsets of {2..n} containing the product of any set of distinct elements whose product is <= n.
Original entry on oeis.org
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1184, 2368, 4448, 8056, 15008, 30016, 52736, 105472, 183424, 339840, 663616, 1327232, 2217088, 4434176, 8744320, 16559168, 30034624, 60069248, 103402112, 206804224, 379941440, 730800064, 1454649248, 2659869664, 4786282208
Offset: 1
The a(6) = 28 sets:
{} {2} {2,4} {2,3,6} {2,3,4,6} {2,3,4,5,6}
{3} {2,5} {2,4,5} {2,3,5,6}
{4} {2,6} {2,4,6} {2,4,5,6}
{5} {3,4} {2,5,6} {3,4,5,6}
{6} {3,5} {3,4,5}
{3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
Cf.
A007865,
A051026,
A103580,
A196724,
A326020,
A326023,
A326076,
A326078,
A326079,
A326081,
A326116,
A326117.
-
Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]
A326024
Number of subsets of {1..n} containing no sums or products of distinct elements.
Original entry on oeis.org
1, 2, 3, 5, 9, 15, 25, 41, 68, 109, 179, 284, 443, 681, 1062, 1587, 2440, 3638, 5443, 8021, 11953, 17273, 25578, 37001, 53953, 77429, 113063, 160636, 232928, 330775, 475380, 672056, 967831, 1359743, 1952235, 2743363, 3918401, 5495993, 7856134, 10984547, 15669741
Offset: 0
The a(0) = 1 through a(5) = 15 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{2,4} {2,3}
{3,4} {2,4}
{2,3,4} {2,5}
{3,4}
{3,5}
{4,5}
{2,3,4}
{2,4,5}
{3,4,5}
Subsets without sums of distinct elements are
A151897.
Subsets without products of distinct elements are
A326117.
Maximal subsets without sums or products of distinct elements are
A326025.
Subsets with sums (and products) are
A326083.
Sum-free and product-free subsets are
A326495.
-
Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Subsets[#,{2,n}],Times@@@Subsets[#,{2,n}]]]=={}&]],{n,0,10}]
-
a(n)={
my(recurse(k, es, ep)=
if(k > n, 1,
my(t = self()(k + 1, es, ep));
if(!bittest(es,k) && !bittest(ep,k),
es = bitor(es, bitand((2<Andrew Howroyd, Aug 25 2019
A326494
Number of subsets of {1..n} containing all differences and quotients of pairs of distinct elements.
Original entry on oeis.org
1, 2, 4, 6, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 0
The a(0) = 1 through a(6) = 13 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{1,2} {3} {3} {3} {3}
{1,2} {4} {4} {4}
{1,2,3} {1,2} {5} {5}
{2,4} {1,2} {6}
{1,2,3} {2,4} {1,2}
{1,2,3,4} {1,2,3} {2,4}
{1,2,3,4} {1,2,3}
{1,2,3,4,5} {1,2,3,4}
{1,2,3,4,5}
{1,2,3,4,5,6}
Subsets with difference are
A054519.
Subsets with quotients are
A326023.
Subsets with quotients > 1 are
A326079.
Subsets without differences or quotients are
A326490.
-
Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Union[Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&],Subtract@@@Select[Tuples[#,2],Greater@@#&]]]&]],{n,0,10}]
A358392
Number of nonempty subsets of {1, 2, ..., n} with GCD equal to 1 and containing the sum of any two elements whenever it is at most n.
Original entry on oeis.org
1, 1, 2, 3, 7, 9, 19, 27, 46, 63, 113, 148, 253, 345, 539, 734, 1198, 1580, 2540, 3417, 5233, 7095, 11190, 14720, 22988, 31057, 47168, 63331, 98233, 129836, 200689, 269165, 406504, 546700, 838766, 1108583, 1700025, 2281517, 3437422, 4597833, 7023543, 9308824, 14198257, 18982014, 28556962
Offset: 1
Inverse Moebius transform of
A103580.
Cf.
A007865,
A050291,
A051026,
A085489,
A139384,
A151897,
A308546,
A326020,
A326076,
A326080,
A326083,
A326114.
Comments