cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A363720 Number of integer partitions of n with different mean, median, and mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 7, 16, 17, 34, 38, 50, 79, 115, 123, 198, 220, 291, 399, 536, 605, 815, 1036, 1241, 1520, 2059, 2315, 3132, 3708, 4491, 5668, 6587, 7788, 10259, 12299, 14515, 17153, 21558, 24623, 30876, 35540, 41476, 52023, 61931, 70811, 85545
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(7) = 2 through a(11) = 16 partitions:
  (421)   (431)   (621)    (532)     (542)
  (3211)  (521)   (3321)   (541)     (632)
          (4211)  (4311)   (631)     (641)
                  (5211)   (721)     (731)
                  (32211)  (5311)    (821)
                           (6211)    (4322)
                           (322111)  (4421)
                                     (5321)
                                     (5411)
                                     (6311)
                                     (7211)
                                     (33221)
                                     (43211)
                                     (52211)
                                     (332111)
                                     (422111)
		

Crossrefs

For equal instead of unequal: A363719, ranks A363727, odd-length A363721.
The case of a unique mode is A363725.
These partitions have ranks A363730.
For factorizations we have A363742, for equal A363741, see A359909, A359910.
Just two statistics:
- (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
- (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
- (mean) = (mode) gives A363723, see A363724, A363731.
- (median) = (mode) gives A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,0,30}]

A363731 Number of integer partitions of n whose mean is a mode but not the only mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 5, 0, 1, 8, 5, 0, 12, 0, 19, 14, 2, 0, 52, 21, 3, 23, 59, 0, 122, 0, 97, 46, 6, 167, 303, 0, 8, 82, 559, 0, 543, 0, 355, 745, 15, 0, 1685, 510, 1083, 251, 840, 0, 2325, 1832, 3692, 426, 34, 0, 9599
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = 6, 9, 12, 15, 18:
  (3,2,1)  (4,3,2)  (5,4,3)        (6,5,4)      (7,6,5)
           (5,3,1)  (6,4,2)        (7,5,3)      (8,6,4)
                    (7,4,1)        (8,5,2)      (9,6,3)
                    (6,3,2,1)      (9,5,1)      (10,6,2)
                    (3,3,2,2,1,1)  (4,4,3,3,1)  (11,6,1)
                                   (5,3,3,2,2)  (4,4,3,3,2,2)
                                   (5,4,3,2,1)  (5,5,3,3,1,1)
                                   (7,3,3,1,1)  (6,4,3,3,1,1)
                                                (7,3,3,2,2,1)
                                                (8,3,3,2,1,1)
                                                (3,3,3,2,2,2,1,1,1)
                                                (6,2,2,2,2,1,1,1,1)
		

Crossrefs

For a unique mode we have A363723, non-constant A362562.
For any number of modes we have A363724.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions with a unique mode, ranks A356862.
A363719 counts partitions with all three averages equal, ranks A363727.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&&!{Mean[#]}==modes[#]&]],{n,30}]

A363946 Triangle read by rows where T(n,k) is the number of integer partitions of n with high mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 3, 2, 0, 1, 0, 1, 6, 3, 0, 0, 1, 0, 1, 6, 4, 3, 0, 0, 1, 0, 1, 11, 5, 4, 0, 0, 0, 1, 0, 1, 11, 13, 0, 4, 0, 0, 0, 1, 0, 1, 18, 9, 8, 5, 0, 0, 0, 0, 1, 0, 1, 18, 21, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

Extending the terminology of A124944, the "high mean" of a multiset is obtained by taking the mean and rounding up.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  3  2  0  1
  0  1  6  3  0  0  1
  0  1  6  4  3  0  0  1
  0  1 11  5  4  0  0  0  1
  0  1 11 13  0  4  0  0  0  1
  0  1 18  9  8  5  0  0  0  0  1
  0  1 18 21 10  0  5  0  0  0  0  1
  0  1 29 28 12  0  6  0  0  0  0  0  1
  0  1 29 32 18 14  0  6  0  0  0  0  0  1
  0  1 44 43 23 16  0  7  0  0  0  0  0  0  1
  0  1 44 77 27 19  0  0  7  0  0  0  0  0  0  1
Row n = 7 counts the following partitions:
  .  (1111111)  (4111)    (511)  (61)  .  .  (7)
                (3211)    (421)  (52)
                (31111)   (331)  (43)
                (2221)    (322)
                (22111)
                (211111)
		

Crossrefs

Row sums are A000041.
Column k = 2 is A026905 redoubled, ranks A363950.
For median instead of mean we have triangle A124944, low A124943.
For mode instead of mean we have rank stat A363486, high A363487.
For median instead of mean we have rank statistic A363942, low A363941.
The rank statistic for this triangle is A363944.
The version for low mean is A363945, rank statistic A363943.
For mode instead of mean we have triangle A363953, low A363952.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[Length[Select[IntegerPartitions[n],meanup[#]==k&]],{n,0,15},{k,0,n}]

A363945 Triangle read by rows where T(n,k) is the number of integer partitions of n with low mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 4, 2, 0, 0, 1, 0, 4, 3, 3, 0, 0, 1, 0, 7, 4, 3, 0, 0, 0, 1, 0, 7, 10, 0, 4, 0, 0, 0, 1, 0, 12, 6, 7, 4, 0, 0, 0, 0, 1, 0, 12, 16, 8, 0, 5, 0, 0, 0, 0, 1, 0, 19, 21, 10, 0, 5, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

Extending the terminology of A124943, the "low mean" of a multiset is its mean rounded down.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  2  2  0  1
  0  4  2  0  0  1
  0  4  3  3  0  0  1
  0  7  4  3  0  0  0  1
  0  7 10  0  4  0  0  0  1
  0 12  6  7  4  0  0  0  0  1
  0 12 16  8  0  5  0  0  0  0  1
  0 19 21 10  0  5  0  0  0  0  0  1
  0 19 24 15 12  0  6  0  0  0  0  0  1
  0 30 32 18 14  0  6  0  0  0  0  0  0  1
  0 30 58 23 16  0  0  7  0  0  0  0  0  0  1
  0 45 47 57  0 19  0  7  0  0  0  0  0  0  0  1
Row k = 8 counts the following partitions:
  .  (41111)     (611)   .  (71)  .  .  .  (8)
     (32111)     (521)      (62)
     (311111)    (5111)     (53)
     (22211)     (431)      (44)
     (221111)    (422)
     (2111111)   (4211)
     (11111111)  (332)
                 (3311)
                 (3221)
                 (2222)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A025065, ranks A363949.
For median instead of mean we have triangle A124943, high A124944.
Column k = 2 is A363745.
For median instead of mean we have rank statistic A363941, high A363942.
The rank statistic for this triangle is A363943.
The high version is A363946, rank statistic A363944.
For mode instead of mean we have A363952, rank statistic A363486.
For high mode instead of mean we have A363953, rank statistic A363487.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    meandown[y_]:=If[Length[y]==0,0,Floor[Mean[y]]];
    Table[Length[Select[IntegerPartitions[n],meandown[#]==k&]],{n,0,15},{k,0,n}]

A363725 Number of integer partitions of n with a different mean, median, and mode, assuming there is a unique mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 3, 8, 8, 17, 19, 28, 39, 59, 68, 106, 123, 165, 220, 301, 361, 477, 605, 745, 929, 1245, 1456, 1932, 2328, 2846, 3590, 4292, 5111, 6665, 8040, 9607, 11532, 14410, 16699, 20894, 24287, 28706, 35745, 42845, 49548, 59963, 70985
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(7) = 1 through a(13) = 17 partitions:
  (3211)  (4211)  (3321)  (5311)    (4322)    (4431)    (4432)
                  (4311)  (6211)    (4421)    (5322)    (5422)
                  (5211)  (322111)  (5411)    (6411)    (5521)
                                    (6311)    (7311)    (6322)
                                    (7211)    (8211)    (6511)
                                    (43211)   (53211)   (7411)
                                    (332111)  (432111)  (8311)
                                    (422111)  (522111)  (9211)
                                                        (54211)
                                                        (63211)
                                                        (333211)
                                                        (433111)
                                                        (442111)
                                                        (532111)
                                                        (622111)
                                                        (3322111)
                                                        (32221111)
		

Crossrefs

The length-4 case appears to be A325695.
For equal instead of unequal we have A363719, ranks A363727.
Allowing multiple modes gives A363720, ranks A363730.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&Mean[#]!=Median[#]!=First[modes[#]]&]],{n,0,30}]

A359896 Number of odd-length integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 6, 9, 11, 15, 27, 32, 50, 58, 72, 112, 149, 171, 246, 286, 359, 477, 630, 773, 941, 1181, 1418, 1749, 2289, 2668, 3429, 4162, 4878, 6074, 7091, 8590, 10834, 12891, 15180, 18491, 22314, 25845, 31657, 36394, 42269, 52547, 62414, 73576, 85701
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(9) = 11 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (21111)  (331)    (422)      (522)
                         (421)    (431)      (621)
                         (511)    (521)      (711)
                         (22111)  (611)      (22221)
                         (31111)  (22211)    (32211)
                                  (32111)    (33111)
                                  (41111)    (42111)
                                  (2111111)  (51111)
                                             (2211111)
                                             (3111111)
		

Crossrefs

These partitions are ranked by A359892.
The any-length version is A359894, complement A240219, strict A359898.
The complement is counted by A359895, ranked by A359891.
The strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]

A363728 Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 50, 12, 14, 33, 54, 0, 115, 0, 92, 75, 31, 99, 323, 0, 45, 162, 443, 0, 507, 0, 467, 732, 88, 0, 1551, 274, 833, 627, 1228, 0, 2035, 1556, 2859, 1152, 221, 0, 9008, 0, 295, 4835, 5358
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(8) = 1 through a(18) = 12 partitions:
  3221  .  32221  .  4332    .  3222221  43332  5443      .  433332
                     5331       3322211  53331  6442         443331
                     322221     4222211  63321  7441         533322
                     422211                     32222221     533331
                                                33222211     543321
                                                42222211     633321
                                                52222111     733311
                                                             322222221
                                                             332222211
                                                             422222211
                                                             432222111
                                                             522222111
		

Crossrefs

Non-constant partitions are counted by A144300, ranks A024619.
This is the non-constant case of A363719, ranks A363727.
These partitions have ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A363947 Number of integer partitions of n with mean < 3/2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 7, 12, 12, 12, 19, 19, 19, 30, 30, 30, 45, 45, 45, 67, 67, 67, 97, 97, 97, 139, 139, 139, 195, 195, 195, 272, 272, 272, 373, 373, 373, 508, 508, 508, 684, 684, 684, 915, 915, 915, 1212, 1212, 1212, 1597, 1597, 1597, 2087
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Examples

			The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5.
The a(1) = 1 through a(8) = 4 partitions:
  (1)  (11)  (111)  (211)   (2111)   (21111)   (22111)    (221111)
                    (1111)  (11111)  (111111)  (31111)    (311111)
                                               (211111)   (2111111)
                                               (1111111)  (11111111)
		

Crossrefs

The high version is A000012 (all ones).
This is A000070 with each term repeated three times (see A025065 for two).
These partitions have ranks A363948.
The complement is counted by A364059.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A327482 counts partitions by integer mean.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}]

A363741 Number of factorizations of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 26 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
Position of first appearance of n is: (1, 2, 4, 16, 64, 5832, 4096, ...).

Examples

			The factorization 6*9*9*12 = 5832 has mean 9, median 9, and modes {9}, so it is counted under a(5832).
The a(n) factorizations for selected n:
2   4     16        64            5832              4096
    2*2   4*4       8*8           18*18*18          64*64
          2*2*2*2   4*4*4         6*9*9*12          8*8*8*8
                    2*2*2*2*2*2   3*6*6*6*9         16*16*16
                                  2*3*3*3*3*3*3*4   4*4*4*4*4*4
                                                    2*2*2*2*2*2*2*2*2*2*2*2
		

Crossrefs

For just (mean) = (median): A359909, see A240219, A359889, A359910, A359911.
The version for partitions is A363719, unequal A363720.
For unequal instead of equal we have A363742.
A000041 counts integer partitions.
A001055 counts factorizations, strict A045778, ordered A074206.
A089723 counts constant factorizations.
A316439 counts factorizations by length, A008284 partitions.
A326622 counts factorizations with integer mean, strict A328966.
A339846 counts even-length factorizations, A339890 odd-length.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],{Mean[#]}=={Median[#]}==modes[#]&]],{n,100}]

A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 8, 1, 10, 9, 3, 11, 13, 6, 15, 18, 9, 13, 24, 18, 1, 25, 24, 25, 3, 19, 36, 40, 6, 29, 41, 52, 13, 33, 45, 79, 19, 42, 57, 95, 36, 1, 39, 68, 133, 54, 3, 62, 72, 158, 87, 6, 55, 87, 214, 121, 13, 81, 95, 250, 177, 24
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			Triangle begins:
   1
   1
   2
   3
   4   1
   4   3
   8   3
   6   8   1
  10   9   3
  11  13   6
  15  18   9
  13  24  18   1
  25  24  25   3
  19  36  40   6
  29  41  52  13
  33  45  79  19
  42  57  95  36   1
  39  68 133  54   3
Row n = 9 counts the following partitions:
  (9)          (441)       (3321)
  (54)         (522)       (4221)
  (63)         (711)       (4311)
  (72)         (3222)      (5211)
  (81)         (6111)      (42111)
  (333)        (22221)     (321111)
  (432)        (32211)
  (531)        (33111)
  (621)        (51111)
  (222111)     (411111)
  (111111111)  (2211111)
               (3111111)
               (21111111)
		

Crossrefs

Row sums are A000041.
Row lengths are approximately A000196.
Column k = 0 is A047966.
For modes we have A362614, rank statistic A362611.
For co-modes we have A362615, rank statistic A362613.
Columns k > 1 sum to A363124.
Column k = 1 is A363125.
This rank statistic (number of non-modes) is A363127.
For non-co-modes we have A363130, rank statistic A363131.
A008284/A058398 count partitions by length/mean.
A275870 counts collapsible partitions.
A353836 counts partitions by number of distinct run-sums.
A359893 counts partitions by median.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				
Previous Showing 21-30 of 47 results. Next