A337984
Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 155: {3,11} 265: {3,16}
33: {2,5} 161: {4,9} 287: {4,13}
35: {3,4} 165: {2,3,5} 291: {2,25}
51: {2,7} 177: {2,17} 295: {3,17}
55: {3,5} 187: {5,7} 309: {2,27}
69: {2,9} 201: {2,19} 323: {7,8}
77: {4,5} 205: {3,13} 327: {2,29}
85: {3,7} 209: {5,8} 329: {4,15}
93: {2,11} 215: {3,14} 335: {3,19}
95: {3,8} 217: {4,11} 341: {5,11}
119: {4,7} 219: {2,21} 355: {3,20}
123: {2,13} 221: {6,7} 381: {2,31}
141: {2,15} 249: {2,23} 385: {3,4,5}
143: {5,6} 253: {5,9} 391: {7,9}
145: {3,10} 255: {2,3,7} 395: {3,22}
A302568 considers singletons to be coprime.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by
A335235.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version
A318717 ranked by
A318719.
Cf.
A051424,
A056239,
A087087,
A112798,
A200976,
A220377,
A302569,
A303140,
A303282,
A328673,
A328867.
A202425
Number of partitions of n into parts having pairwise common factors but no overall common factor.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 1, 6, 0, 5, 0, 2, 2, 9, 0, 8, 2, 4, 3, 16, 0, 22, 5, 6, 5, 19, 2, 35, 8, 14, 6, 44, 4, 55, 13, 16, 19, 64, 6, 82, 17, 39, 31, 108, 10, 105, 40, 66, 46, 161, 14, 182, 61, 97, 72, 207, 37, 287, 85, 144, 93, 357, 59
Offset: 31
a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(37) = 2: [6,6,10,15], [10,12,15].
a(41) = 3: [6,10,10,15], [6,15,20], [6,14,21].
a(47) = 6: [6,6,10,10,15], [10,10,12,15], [6,6,15,20], [12,15,20], [6,6,14,21], [12,14,21].
a(49) = 5: [6,6,6,6,10,15], [6,6,10,12,15], [10,12,12,15], [6,10,15,18], [10,15,24].
The version with only distinct parts compared is
A328672.
The Heinz numbers of these partitions are
A328868.
The version for non-isomorphic multiset partitions is
A319759.
The version for set-systems is
A326364.
Intersecting partitions are
A200976.
-
with(numtheory):
w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)):
b:= proc(n, i, g, s) option remember; local j, ok, si;
if n<0 then 0
elif n=0 then `if`(g>1, 0, 1)
elif i<2 or member(1, s) then 0
else ok:= evalb(i<=n);
si:= map(x->w(x, i), s);
for j in s while ok do ok:= igcd(i, j)>1 od;
b(n, i-1, g, si) +`if`(ok, add(b(n-t*i, i-1, igcd(i, g),
si union {w(i,i)} ), t=1..iquo(n, i)), 0)
fi
end:
a:= n-> b(n, n, 0, {}):
seq(a(n), n=31..100);
-
w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok, si}, Which[n<0, 0, n == 0, If[g>1, 0, 1], i<2 || MemberQ[s, 1], 0, True, ok = (i <= n); si = w[#, i]& /@ s; Do[If[ok, ok = (GCD[i, j]>1)], {j, s}]; b[n, i-1, g, si] + If[ok, Sum[b[n-t*i, i-1, GCD[i, g], si ~Union~ {w[i, i]}], {t, 1, Quotient[n, i]}], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And@@(GCD[##]>1&)@@@Tuples[#,2]&]],{n,0,40}] (* Gus Wiseman, Nov 04 2019 *)
A328672
Number of integer partitions of n with relatively prime parts in which no two distinct parts are relatively prime.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 4, 1, 1, 2, 7, 1, 6, 1, 3, 3, 10, 1, 9, 3, 5, 4, 17, 1, 23, 6, 7, 6, 20, 3, 36, 9, 15, 7, 45, 5, 56, 14, 17, 20, 65, 7, 83, 18, 40
Offset: 0
Examples:
a(31) = 2: a(46) = 2:
(15,10,6) (15,15,10,6)
(1^31) (1^46)
a(37) = 3: a(47) = 7:
(15,12,10) (20,15,12)
(15,10,6,6) (21,14,12)
(1^37) (20,15,6,6)
a(41) = 4: (21,14,6,6)
(20,15,6) (15,12,10,10)
(21,14,6) (15,10,10,6,6)
(15,10,10,6) (1^47)
(1^41) a(49) = 6:
a(43) = 4: (24,15,10)
(18,15,10) (18,15,10,6)
(15,12,10,6) (15,12,12,10)
(15,10,6,6,6) (15,12,10,6,6)
(1^43) (15,10,6,6,6,6)
(1^39)
The Heinz numbers of these partitions are
A328679.
The version for non-isomorphic multiset partitions is
A319759.
Relatively prime partitions are
A000837.
Intersecting partitions are
A328673.
-
Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[#],{2}]]&]],{n,0,32}]
A337983
Number of compositions of n into distinct parts, any two of which have a common divisor > 1.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0
The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
2 3 4 5 6 7 8 9 A B C D E F
24 26 36 28 2A 2C 3C
42 62 63 46 39 4A 5A
64 48 68 69
82 84 86 96
93 A4 A5
A2 C2 C3
246 248
264 284
426 428
462 482
624 824
642 842
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A051185 and
A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A318749 is the version for factorizations, with non-strict version
A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.
-
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]
A338315
Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 3, 2, 4, 4, 10, 6, 15, 13, 16, 21, 31, 29, 43, 41, 50, 63, 79, 81, 99, 113, 129, 145, 179, 197, 228, 249, 284, 328, 363, 418, 472, 522, 581, 655, 741, 828, 921, 1008, 1123, 1259, 1407, 1546, 1709, 1889, 2077, 2292, 2554, 2799, 3061, 3369
Offset: 0
The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11):
32 . 43 53 54 73 65 75 76
52 332 72 433 74 543 85
322 522 532 83 552 94
3222 3322 92 732 A3
443 5322 B2
533 33222 544
722 553
3332 733
5222 922
32222 4333
5332
7222
33322
52222
322222
A200976 is a pairwise non-coprime instead of pairwise coprime version.
A318717 counts pairwise non-coprime strict partitions.
A337987 gives the Heinz numbers of these partitions.
A007359 counts singleton or pairwise coprime partitions with no 1's.
A328673 counts partitions with no two distinct parts relatively prime.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337697 counts pairwise coprime compositions with no 1's.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}]
A337696
Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 512: (10) 2304: (3,9)
2: (2) 514: (8,2) 2560: (2,10)
4: (3) 520: (6,4) 2568: (2,6,4)
8: (4) 544: (4,6) 2592: (2,4,6)
16: (5) 640: (2,8) 4096: (13)
32: (6) 1024: (11) 8192: (14)
34: (4,2) 2048: (12) 8194: (12,2)
40: (2,4) 2050: (10,2) 8200: (10,4)
64: (7) 2052: (9,3) 8224: (8,6)
128: (8) 2056: (8,4) 8226: (8,4,2)
130: (6,2) 2082: (6,4,2) 8232: (8,2,4)
160: (2,6) 2088: (6,2,4) 8320: (6,8)
256: (9) 2176: (4,8) 8704: (4,10)
260: (6,3) 2178: (4,6,2) 8706: (4,8,2)
288: (3,6) 2208: (4,2,6) 8832: (4,2,8)
A318719 gives the Heinz numbers of the unordered version, with non-strict version
A337694.
A337667 counts the non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case
A319786.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A333227 ranks pairwise coprime compositions, or
A335235 if singletons are considered coprime.
-
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
A335236 ranks compositions neither a singleton nor pairwise coprime.
-
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
-
A337666 ranks the non-strict version.
Cf.
A082024,
A101268,
A302797,
A305713,
A319752,
A327040,
A327516,
A336737,
A337599,
A337604,
A337605.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]
A338316
Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 33: {2,5} 71: {20}
3: {2} 35: {3,4} 73: {21}
5: {3} 37: {12} 75: {2,3,3}
7: {4} 41: {13} 77: {4,5}
9: {2,2} 43: {14} 79: {22}
11: {5} 45: {2,2,3} 81: {2,2,2,2}
13: {6} 47: {15} 83: {23}
15: {2,3} 49: {4,4} 85: {3,7}
17: {7} 51: {2,7} 89: {24}
19: {8} 53: {16} 93: {2,11}
23: {9} 55: {3,5} 95: {3,8}
25: {3,3} 59: {17} 97: {25}
27: {2,2,2} 61: {18} 99: {2,2,5}
29: {10} 67: {19} 101: {26}
31: {11} 69: {2,9} 103: {27}
A338315 does not consider singletons coprime, with Heinz numbers
A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers
A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by
A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers
A304711.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers
A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
A328871
Number of integer partitions of n whose distinct parts are pairwise indivisible (stable) and pairwise non-relatively prime (intersecting).
Original entry on oeis.org
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 6, 2, 7, 5, 7, 2, 10, 2, 11, 7, 14, 2, 16, 4, 19, 8, 22, 2, 30, 3, 29, 14, 37, 8, 48, 4, 50, 19, 59, 5, 82, 4, 81, 28, 93, 8, 128, 9, 128, 38, 147, 8, 199, 19, 196, 52, 223, 12, 308
Offset: 0
The a(1) = 1 through a(10) = 5 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 111111111 64
111111 11111111 22222
1111111111
The Heinz numbers of these partitions are
A329366.
Replacing "intersecting" with "relatively prime" gives
A328676.
Intersecting partitions are
A328673.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],stableQ[Union[#],Divisible]&&stableQ[Union[#],GCD[#1,#2]==1&]&]],{n,0,30}]
A338318
Composite numbers whose prime indices are pairwise intersecting (non-coprime).
Original entry on oeis.org
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 121: {5,5} 243: {2,2,2,2,2}
21: {2,4} 125: {3,3,3} 247: {6,8}
25: {3,3} 129: {2,14} 259: {4,12}
27: {2,2,2} 133: {4,8} 261: {2,2,10}
39: {2,6} 147: {2,4,4} 267: {2,24}
49: {4,4} 159: {2,16} 273: {2,4,6}
57: {2,8} 169: {6,6} 289: {7,7}
63: {2,2,4} 171: {2,2,8} 299: {6,9}
65: {3,6} 183: {2,18} 301: {4,14}
81: {2,2,2,2} 185: {3,12} 303: {2,26}
87: {2,10} 189: {2,2,2,4} 305: {3,18}
91: {4,6} 203: {4,10} 319: {5,10}
111: {2,12} 213: {2,20} 321: {2,28}
115: {3,9} 235: {3,15} 325: {3,3,6}
117: {2,2,6} 237: {2,22} 333: {2,2,12}
A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A318717 counts pairwise intersecting strict partitions.
A328673 counts partitions with pairwise intersecting distinct parts, with Heinz numbers
A328867 and restriction to triples
A337599 (except n = 3).
Cf.
A008578,
A051185,
A056239,
A101268,
A112798,
A284825,
A302569,
A305843,
A319752,
A327516,
A335236,
A337666,
A337667.
-
stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]
Comments