cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A299090 Number of "digits" in the binary representation of the multiset of prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2018

Keywords

Comments

a(n) is also the binary weight of the largest multiplicity in the multiset of prime factors of n.
Any finite multiset m has a unique binary representation as a finite word bin(m) = s_k..s_1 such that: (1) each "digit" s_i is a finite set, (2) the leading term s_k is nonempty, and (3) m = 1*s_1 + 2*s_2 + 4*s_3 + 8*s_4 + ... + 2^(k-1)*s_k where + is multiset union, 1*S = S as a multiset, and n*S = 1*S + (n-1)*S for n > 1. The word bin(m) can be thought of as a finite 2-adic set. For example,
bin({1,1,1,1,2,2,3,3,3}) = {1}{2,3}{3},
bin({1,1,1,1,1,2,2,2,2}) = {1,2}{}{1},
bin({1,1,1,1,1,2,2,2,3}) = {1}{2}{1,2,3}.
a(n) is the least k such that columns indexed k or greater in A329050 contain no divisors of n. - Peter Munn, Feb 10 2020

Examples

			36 has prime factors {2,2,3,3} with binary representation {2,3}{} so a(36) = 2.
Binary representations of the prime multisets of each positive integer begin: {}, {2}, {3}, {2}{}, {5}, {2,3}, {7}, {2}{2}, {3}{}, {2,5}, {11}, {2}{3}, {13}, {2,7}, {3,5}, {2}{}{}.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,0,IntegerLength[Max@@FactorInteger[n][[All,2]],2]],{n,100}]
  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A299090(n) = if(1==n,0,#binary(A051903(n))); \\ Antti Karttunen, Jul 29 2018
    
  • Python
    from sympy import factorint
    def A299090(n): return max(factorint(n).values(),default=0).bit_length() # Chai Wah Wu, Apr 11 2025

Formula

a(n) = A070939(A051903(n)), n>1.
If m is a set then bin(m) has only one "digit" m; so a(n) = 1 if n is squarefree.
If m is of the form n*{x} then bin(m) is obtained by listing the binary digits of n and replacing 0 -> {}, 1 -> {x}; so a(p^n) = binary weight of n.
a(n) = A061395(A225546(n)). - Peter Munn, Feb 10 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} (1 - 1/zeta(2^k)) = 1.47221057635756400916... . - Amiram Eldar, Jan 05 2024

Extensions

More terms from Antti Karttunen, Jul 29 2018

A191555 a(n) = Product_{k=1..n} prime(k)^(2^(n-k)).

Original entry on oeis.org

1, 2, 12, 720, 3628800, 144850083840000, 272760108249915378892800000000, 1264767303092594444142256488682840323816161280000000000000000
Offset: 0

Views

Author

Rick L. Shepherd, Jun 06 2011

Keywords

Comments

x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(1)*sqrt(p(2)*...*sqrt(p(n-1)*sqrt(p(n)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = p(n)).
A prime version of Somos's quadratic recurrence sequence A052129(n) = A052129(n-1)^2 * n = Product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 29 2014
All positive integers have unique factorizations into powers of distinct primes, and into powers of squarefree numbers with distinct exponents that are powers of 2. (See A329332 for a description of the relationship between the two.) a(n) is the least number such that both factorizations have n factors. - Peter Munn, Dec 15 2019
From Peter Munn, Jan 24 2020 to Feb 06 2020: (Start)
For n >= 0, a(n+1) is the n-th power of 12 in the monoid defined by A306697.
a(n) is the least positive integer that cannot be expressed as the product of fewer than n terms of A072774 (powers of squarefree numbers).
All terms that are less than the order of the Monster simple group (A003131) are divisors of the group's order, with a(6) exceeding its square root.
(End)
It is remarkable that 4 of the first 5 terms are factorials. - Hal M. Switkay, Jan 21 2025

Examples

			a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^8*3^4*5^2*7^1 = 3628800 and x^16 - 3628800 is the minimal polynomial for the algebraic number sqrt(2*sqrt(3*sqrt(5*sqrt(7)))).
		

Crossrefs

Sequences with related definitions: A006939, A052129, A191554, A239350 (and thence A239349), A252738, A266639.
A000290, A003961, A059896, A306697 are used to express relationship between terms of this sequence.
Subsequence of A025487, A138302, A225547, A267117 (apart from a(1) = 2), A268375, A331593.
Antidiagonal products of A329050.

Programs

  • Magma
    [n le 1 select 2 else Self(n-1)^2*NthPrime(n): n in [1..10]]; // Vincenzo Librandi, Feb 06 2016
  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)^2*ithprime(n))
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Mar 05 2020
  • Mathematica
    RecurrenceTable[{a[1] == 2, a[n] == a[n-1]^2 Prime[n]}, a, {n, 10}] (* Vincenzo Librandi, Feb 06 2016 *)
    Table[Product[Prime[k]^2^(n-k),{k,n}],{n,0,10}] (* or *) nxt[{n_,a_}]:={n+1,a^2 Prime[n+1]}; NestList[nxt,{0,1},10][[All,2]] (* Harvey P. Dale, Jan 07 2022 *)
  • PARI
    a(n) = prod(k=1, n, prime(k)^(2^(n-k)))
    
  • Scheme
    ;; Two variants, both with memoization-macro definec.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000040 n) (A000290 (A191555 (- n 1)))))) ;; After the original recurrence.
    (definec (A191555 n) (if (= 1 n) 2 (* (A000079 (A000079 (- n 1))) (A003961 (A191555 (- n 1)))))) ;; After the alternative recurrence - Antti Karttunen, Feb 06 2016
    

Formula

For n > 0, a(n) = a(n-1)^2 * prime(n); a(0) = 1. [edited to extend to a(0) by Peter Munn, Feb 13 2020]
a(0) = 1; for n > 0, a(n) = 2^(2^(n-1)) * A003961(a(n-1)). - Antti Karttunen, Feb 06 2016, edited Feb 13 2020 because of the new prepended starting term.
For n > 1, a(n) = A306697(a(n-1),12) = A059896(a(n-1)^2, A003961(a(n-1))). - Peter Munn, Jan 24 2020

Extensions

a(0) added by Peter Munn, Feb 13 2020

A306697 Square array T(n, k) read by antidiagonals, n > 0 and k > 0: T(n, k) is obtained by applying a Minkowski sum to sets related to the Fermi-Dirac factorizations of n and of k (see Comments for precise definition).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 30, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Mar 05 2019

Keywords

Comments

For any m > 0:
- let F(m) be the set of distinct Fermi-Dirac primes (A050376) with product m,
- for any i >=0 0 and j >= 0, let f(prime(i+1)^(2^i)) be the lattice point with coordinates X=i and Y=j (where prime(k) denotes the k-th prime number),
- f establishes a bijection from the Fermi-Dirac primes to the lattice points with nonnegative coordinates,
- let P(m) = { f(p) | p in F(m) },
- P establishes a bijection from the nonnegative integers to the set, say L, of finite sets of lattice points with nonnegative coordinates,
- let Q be the inverse of P,
- for any n > 0 and k > 0:
T(n, k) = Q(P(n) + P(k))
where "+" denotes the Minkowski addition on L.
This sequence has similarities with A297845, and their data sections almost match; T(6, 6) = 30, however A297845(6, 6) = 90.
This sequence has similarities with A067138; here we work on dimension 2, there in dimension 1.
This sequence as a binary operation distributes over A059896, whereas A297845 distributes over multiplication (A003991) and A329329 distributes over A059897. See the comment in A329329 for further description of the relationship between these sequences. - Peter Munn, Dec 19 2019

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8     9    10    11    12
  ---+-------------------------------------------------------------
    1|  1   1   1    1    1    1    1     1     1     1     1     1
    2|  1   2   3    4    5    6    7     8     9    10    11    12
    3|  1   3   5    9    7   15   11    27    25    21    13    45
    4|  1   4   9   16   25   36   49    64    81   100   121   144
    5|  1   5   7   25   11   35   13   125    49    55    17   175
    6|  1   6  15   36   35   30   77   216   225   210   143   540
    7|  1   7  11   49   13   77   17   343   121    91    19   539
    8|  1   8  27   64  125  216  343   128   729  1000  1331  1728
    9|  1   9  25   81   49  225  121   729   625   441   169  2025
   10|  1  10  21  100   55  210   91  1000   441   110   187  2100
   11|  1  11  13  121   17  143   19  1331   169   187    23  1573
   12|  1  12  45  144  175  540  539  1728  2025  2100  1573   720
		

Crossrefs

Columns (some differing for term 1) and equivalently rows: A003961(3), A000290(4), A045966(5), A045968(7), A045970(11).
Related binary operations: A067138, A059896, A297845/A003991, A329329/A059897.

Programs

  • PARI
    \\ See Links section.

Formula

For any m > 0, n > 0, k > 0, i >= 0, j >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 3) = A003961(n),
- T(n, 4) = n^2 (A000290),
- T(n, 5) = A357852(n),
- T(n, 7) = A045968(n) (when n > 1),
- T(n, 11) = A045970(n) (when n > 1),
- T(n, 2^(2^i)) = n^(2^i),
- T(2^i, 2^j) = 2^A067138(i, j),
- T(A019565(i), A019565(j)) = A019565(A067138(i, j)),
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(2^(2^i), 2^(2^j)) = 2^(2^(i + j)),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A064547(T(n, k)) <= A064547(n) * A064547(k).
From Peter Munn, Dec 05 2019:(Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
Equivalently, T(prime(i_1 - 1)^(2^(j_1)), prime(i_2 - 1)^(2^(j_2))) = prime(i_1+i_2 - 1)^(2^(j_1+j_2)), where prime(i) = A000040(i).
T(A059896(i,j), k) = A059896(T(i,k), T(j,k)) (T distributes over A059896).
T(A019565(i), 2^j) = A019565(i)^j.
T(A225546(i), A225546(j)) = A225546(T(i,j)).
(End)

A225547 Fixed points of A225546.

Original entry on oeis.org

1, 2, 9, 12, 18, 24, 80, 108, 160, 216, 625, 720, 960, 1250, 1440, 1792, 1920, 2025, 3584, 4050, 5625, 7500, 8640, 11250, 15000, 16128, 17280, 18225, 21504, 24300, 32256, 36450, 43008, 48600, 50000, 67500, 100000, 135000, 143360, 162000, 193536, 218700, 286720, 321489, 324000, 387072, 437400, 450000, 600000
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

Every number in this sequence is the product of a unique subset of A225548.
From Peter Munn, Feb 11 2020: (Start)
The terms are the numbers whose Fermi-Dirac factors (see A050376) occur symmetrically about the main diagonal of A329050.
Closed under the commutative binary operation A059897(.,.). As numbers are self-inverse under A059897, the sequence thereby forms a subgroup of the positive integers under A059897.
(End)

Examples

			The Fermi-Dirac factorization of 160 is 2 * 5 * 16. The factors 2, 5 and 16 are A329050(0,0), A329050(2,0) and A329050(0,2), having symmetry about the main diagonal of A329050. So 160 is in the sequence.
		

Crossrefs

Subsequences: A191554, A191555, A225548.
Cf. fixed points of the comparable A122111 involution: A088902.

Programs

  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    ff(fa) = {for (i=1, #fa~, my(p=fa[i, 1]); fa[i, 1] = A019565(fa[i, 2]); fa[i, 2] = 2^(primepi(p)-1); ); fa; } \\ A225546
    pos(k, fs) = for (i=1, #fs, if (fs[i] == k, return(i)););
    normalize(f) = {my(list = List()); for (k=1, #f~, my(fk = factor(f[k,1])); for (j=1, #fk~, listput(list, fk[j,1]));); my(fs = Set(list)); my(m = matrix(#fs, 2)); for (i=1, #m~, m[i,1] = fs[i]; for (k=1, #f~, m[i,2] += valuation(f[k,1], fs[i])*f[k,2];);); m;}
    isok(n) = my(fa=factor(n), fb=ff(fa)); normalize(fb) == fa; \\ Michel Marcus, Aug 05 2022

A337533 1 together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
Every squarefree number is present, as the square root of the square part of a squarefree number is 1. Other 4th-power-free numbers are present if and only if they are nonsquare.
If the square part of nonsquarefree k is a 4th power, k does not appear.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k > 1 is in this sequence if and only if the members of S_k occur in consecutive columns of A329050, starting with column 0.
If the qualifying condition in the previous paragraph was based on the rows instead of the columns of A329050, we would get A055932. The self-inverse function defined by A225546 transposes A329050. A225546 also has multiplicative properties such that if we consider A055932 and this sequence as sets, A225546(.) maps the members of either set 1:1 onto the other set.

Examples

			4 is square and not 1, so 4 is not in the sequence.
12 = 3 * 2^2 is nonsquare, and has square part 4, whose square root (2) is in the sequence. So 12 is in the sequence.
32 = 2 * 4^2 is nonsquare, but has square part 16, whose square root (4) is not in the sequence. So 32 is not in the sequence.
		

Crossrefs

Complement of A337534.
Closed under A000188(.).
A209229, A267116 are used in a formula defining this sequence.
Subsequence of A164514.
A007913, A008833, A008835, A335324 give the squarefree, square and comparably related parts of a number.
Related to A055932 via A225546.

Programs

  • Maple
    S:= {1}:
    for n from 2 to 100 do
      if not issqr(n) then
        F:= ifactors(n)[2];
        s:= mul(t[1]^floor(t[2]/2),t=F);
        if member(s,S) then S:= S union {n} fi
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Jan 07 2025
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[100], # == 1 || pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers m such that A209229(A267116(m) + 1) = 1.
If A008835(a(n)) > 1 then A335324(a(n)) > 1.
If A008833(a(n)) > 1 then A007913(a(n)) > 1.

A337534 Nontrivial squares together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

4, 9, 16, 25, 32, 36, 48, 49, 64, 80, 81, 96, 100, 112, 121, 144, 160, 162, 169, 176, 196, 208, 224, 225, 240, 243, 256, 272, 289, 304, 324, 336, 352, 361, 368, 400, 405, 416, 441, 464, 480, 484, 486, 496, 512, 528, 529, 544, 560, 567, 576, 592, 608, 624, 625
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
No terms are squarefree, as the square root of the square part of a squarefree number is 1.
If the square part of k is a 4th power, other than 1, k appears.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k is in this sequence if and only if there is m >= 1 such that column m of A329050 contains a member of S_k, but column m - 1 does not.

Examples

			4 is square and nontrivial (not 1), so 4 is in the sequence.
12 = 3 * 2^2 is nonsquare, but has square part 4, whose square root (2) is not in the sequence. So 12 is not in the sequence.
32 = 2 * 4^2 is nonsquare, and has square part 16, whose square root (4) is in the sequence. So 32 is in the sequence.
		

Crossrefs

Complement of A337533.
Subsequences: A000290\{0,1}, A082294.
Subsequence of: A013929, A162643.
A209229, A267116 are used in a formula defining this sequence.

Programs

  • Maple
    A337534 := proc(n)
        option remember ;
        if n =1  then
            4;
        else
            for a from procname(n-1)+1 do
                if A209229(A267116(a)+1) = 0 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A337534(n),n=1..80) ; # R. J. Mathar, Feb 16 2021
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[625], ! pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers k such that A209229(A267116(k) + 1) = 0.
A008833(a(n)) > 1.

A344534 For any number n with binary expansion Sum_{k = 1..m} 2^e_k (where 0 <= e_1 < ... < e_m), a(n) = Product_{k = 1..m} prime(1+A002262(e_k))^2^A025581(e_k) (where prime(k) denotes the k-th prime number).

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 12, 24, 16, 32, 64, 128, 48, 96, 192, 384, 9, 18, 36, 72, 27, 54, 108, 216, 144, 288, 576, 1152, 432, 864, 1728, 3456, 5, 10, 20, 40, 15, 30, 60, 120, 80, 160, 320, 640, 240, 480, 960, 1920, 45, 90, 180, 360, 135, 270, 540, 1080, 720, 1440
Offset: 0

Views

Author

Rémy Sigrist, May 22 2021

Keywords

Comments

The ones in the binary expansion of n encode the Fermi-Dirac factors of a(n).
The following table gives the rank of the bit corresponding to the Fermi-Dirac factor p^2^k:
...
7| 9
5| 5 8
3| 2 4 7
2| 0 1 3 6
---+--------
p/k| 0 1 2 3 ...
This sequence is a bijection from the nonnegative integers to the positive integers with inverse A344536.
This sequence establishes a bijection from A261195 to A225547.
This sequence and A344535 each map between two useful choices for encoding sets of elements drawn from a 2-dimensional array. To give a very specific example, each mapping is an isomorphism between two alternative integer representations of the polynomial ring GF2[x,y]. The relevant set is {x^i*y^j : i, j >= 0}. The mappings between the two representations of the ring's addition operation are from XOR (A003987) to A059897(.,.) and for the multiplication operation, they are from A329331(.,.) to A329329(.,.). - Peter Munn, May 31 2021

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so we have the following Fermi-Dirac factors p^2^k:
      5| X
      3|
      2|   X X
    ---+------
    p/k| 0 1 2
- a(42) = 2^2^1 * 2^2^2 * 5^2^0 = 320.
		

Crossrefs

Comparable mappings that also use Fermi-Dirac factors: A052330, A059900.
Maps binary operations A003987 to A059897, A329331 to A329329.

Programs

  • PARI
    A002262(n)=n-binomial(round(sqrt(2+2*n)), 2)
    A025581(n)=binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1)
    a(n) = { my (v=1, e); while (n, n-=2^e=valuation(n, 2); v* = prime(1 + A002262(e))^2^A025581(e)); v }

Formula

a(n) = A344535(A344531(n)).
a(n) = A344535(n) iff n belongs to A261195.
A064547(a(n)) = A000120(n).
a(A036442(n)) = prime(n).
a(A006125(n+1)) = 2^2^n for any n >= 0.
a(m + n) = a(m) * a(n) when m AND n = 0 (where AND denotes the bitwise AND operator).
From Peter Munn, Jun 06 2021: (Start)
a(n) = A225546(A344535(n)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(A329331(n, k)) = A329329(a(n), a(k)).
(End)

A306446 a(n) is the number of connected components in the Fermi-Dirac factorization of n (see Comments for precise definition).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Rémy Sigrist, Feb 16 2019

Keywords

Comments

For any n > 0:
- let F(n) be the set of distinct Fermi-Dirac primes (A050376) with product n,
- let G(n) be the undirected graph with vertices F(n) and the following connection rules: for any k >= 0 and any pair of consecutive prime numbers (p, q):
- p^(2^k) and p^(2^(k+1)) are connected,
- p^(2^k) and q^(2^k) are connected,
- a(n) is the number of connected components in G(n).
The sequence may be specified algebraically by formulas (1) to (2c) in my contemporary entry in the formula section. - Peter Munn, Jan 05 2021

Examples

			For n = 67!:
- the Fermi-Dirac primes p^(2^k) in F(67!) can be depicted as:
    6|@
    5|
    4| @
    3| @@@
    2| @@ @@
    1| @@@@ @@@@@
    0| @@  @@@   @@@@@@@@
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- G(67!) has 4 connected components:
    6|A
    5|
    4| B
    3| BBB
    2| BB BB
    1| BBBB CCCCC
    0| BB  CCC   DDDDDDDD
  ---+-------------------
  k/p|    111122334445566
     |2357137939171373917
- hence a(67!) = 4.
		

Crossrefs

A050376, A059895, A059896, A306697 are used in a formula defining this sequence.
A329050 corresponds to the array depicted in the first example, with prime(n+1) = p.
The formula section details how the sequence maps the terms of A002110, A066205.
A003961, A225546, A340346 are used to express relationship between terms of this sequence.

Programs

  • PARI
    See Links section.

Formula

If m and n are coprime, then a(m * n) <= a(m) + a(n).
a(p^k) = A069010(k) for any k >= 0 and any prime number p.
a(n) <= A064547(n).
a(A002110(k)) = 1 for any k > 0.
a(A066205(k)) = k for any k > 0.
From Peter Munn, Jan 05 2021: (Start)
(1) a(1) = 0, otherwise a(n) > 0.
For any k, n > 0:
(2a) a(A050376(k)) = 1;
(2b) a(A059896(n,k)) <= a(n) + a(k);
(2c) a(A059896(n,k)) = a(n) + a(k) if and only if A059895(A306697(n,24), k) = 1 and A059895(n, A306697(k,24)) = 1.
For any n > 0, write n = j * k^2 * m^4, j, k squarefree, m > 0:
(3a) a(n) <= a(j) + a(k) + a(m);
(3b) if gcd(j, k) = 1, a(n) = a(j) + a(n/j);
(3c) if gcd(j, k) = j, a(n) = a(n/j);
(3d) if gcd(k, m) = 1, a(n) = a(n/m^4) + a(m^4);
(3e) if gcd(j, k) = k and gcd(k, m) = 1, a(n) = a(j) + a(m).
For any n > 0:
(4a) a(n^2) = a(A003961(n)) = a(A225546(n)) = a(n);
(4b) a(n) = a(A340346(n)) + a(n/A340346(n)).
For any odd n > 0 (with k >= 0, m >= 0):
(5) If n = 9^k * (6m + 1) or n = 9^k * (6m + 5) then a(2n) = a(n) + 1; otherwise a(2n) = a(n).
(End)
Previous Showing 11-18 of 18 results.