cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A185974 shifted left once at a(76) = 99, A185974(75) = 98.
A permutation of the positive integers.
This is the Abramowitz-Stegun ordering of integer partitions (A334433) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334435.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       50: {1,3,3}
    2: {1}           13: {6}               45: {2,2,3}
    3: {2}           22: {1,5}             56: {1,1,1,4}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           25: {3,3}             54: {1,2,2,2}
    6: {1,2}         28: {1,1,4}           80: {1,1,1,1,3}
    8: {1,1,1}       30: {1,2,3}           72: {1,1,1,2,2}
    7: {4}           27: {2,2,2}           96: {1,1,1,1,1,2}
   10: {1,3}         40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
    9: {2,2}         36: {1,1,2,2}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       34: {1,7}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     39: {2,6}
   11: {5}           17: {7}               55: {3,5}
   14: {1,4}         26: {1,6}             49: {4,4}
   15: {2,3}         33: {2,5}             52: {1,1,6}
   20: {1,1,3}       35: {3,4}             66: {1,2,5}
   18: {1,2,2}       44: {1,1,5}           70: {1,3,4}
   24: {1,1,1,2}     42: {1,2,4}           63: {2,2,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A129129.
Compositions under the same order are A296774 (triangle).
The dual version (sum/length/lex) is A334433.
The version for reversed partitions is A334435.
The constructive version is A334439 (triangle).
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

Formula

A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).

A103921 Irregular triangle T(n,m) (n >= 0) read by rows: row n lists numbers of distinct parts of partitions of n in Abramowitz-Stegun order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 1, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 3
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

T(n, m) is the number of distinct parts of the m-th partition of n in Abramowitz-Stegun order; n >= 0, m = 1..p(n) = A000041(n).
The row length sequence of this table is p(n)=A000041(n) (number of partitions).
In order to count distinct parts of a partition consider the partition as a set instead of a multiset. E.g., n=6: read [1,1,1,3] as {1,3} and count the elements, here 2.
Rows are the same as the rows of A115623, but in reverse order.
From Wolfdieter Lang, Mar 17 2011: (Start)
The number of 1s in row number n, n >= 1, is tau(n)=A000005(n), the number of divisors of n.
For the proof read off the divisors d(n,j), j=1..tau(n), from row number n of table A027750, and translate them to the tau(n) partitions d(n,1)^(n/d(n,1)), d(n,2)^(n/d(n,2)),..., d(n,tau(n))^(n/d(n,tau(n))).
See a comment by Giovanni Resta under A000005. (End)
From Gus Wiseman, May 20 2020: (Start)
The name is correct if integer partitions are read in reverse, so that the parts are weakly increasing. The non-reversed version is A334440.
Also the number of distinct parts of the n-th integer partition in lexicographic order (A193073).
Differs from the number of distinct parts in the n-th integer partition in (sum/length/revlex) order (A334439). For example, (6,2,2) has two distinct elements, while (1,4,5) has three.
(End)

Examples

			Triangle starts:
  0,
  1,
  1, 1,
  1, 2, 1,
  1, 2, 1, 2, 1,
  1, 2, 2, 2, 2, 2, 1,
  1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1,
  1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 2, ...
a(5,4)=2 from the fourth partition of 5 in the mentioned order, i.e., (1^2,3), which has two distinct parts, namely 1 and 3.
		

Crossrefs

Row sums are A000070.
Row lengths are A000041.
The lengths of these partitions are A036043.
The maxima of these partitions are A049085.
The version for non-reversed partitions is A334440.
The version for colex instead of lex is (also) A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Compositions in Abramowitz-Stegun order are A124734.

Programs

  • Mathematica
    Join@@Table[Length/@Union/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 20 2020 *)

Formula

a(n) = A001221(A185974(n)). - Gus Wiseman, May 20 2020

Extensions

Edited by Franklin T. Adams-Watters, May 29 2006

A334434 Heinz number of the n-th integer partition in graded lexicographic order.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 27, 40, 30, 25, 28, 21, 22, 13, 128, 96, 72, 54, 80, 60, 45, 50, 56, 42, 35, 44, 33, 26, 17, 256, 192, 144, 108, 81, 160, 120, 90, 100, 75, 112, 84, 63, 70, 49, 88, 66, 55, 52, 39, 34, 19
Offset: 0

Views

Author

Gus Wiseman, May 01 2020

Keywords

Comments

A permutation of the positive integers.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 45: {2,2,3}
    2: {1}             64: {1,1,1,1,1,1}       50: {1,3,3}
    4: {1,1}           48: {1,1,1,1,2}         56: {1,1,1,4}
    3: {2}             36: {1,1,2,2}           42: {1,2,4}
    8: {1,1,1}         27: {2,2,2}             35: {3,4}
    6: {1,2}           40: {1,1,1,3}           44: {1,1,5}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       25: {3,3}               26: {1,6}
   12: {1,1,2}         28: {1,1,4}             17: {7}
    9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
   10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    108: {1,1,2,2,2}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}       81: {2,2,2,2}
   18: {1,2,2}         72: {1,1,1,2,2}        160: {1,1,1,1,1,3}
   20: {1,1,3}         54: {1,2,2,2}          120: {1,1,1,2,3}
   15: {2,3}           80: {1,1,1,1,3}         90: {1,2,2,3}
   14: {1,4}           60: {1,1,2,3}          100: {1,1,3,3}
Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  27  40  30  25  28  21  22  13
  128  96  72  54  80  60  45  50  56  42  35  44  33  26  17
  ...
This corresponds to the tetrangle:
                  0
                 (1)
               (11)(2)
             (111)(21)(3)
        (1111)(211)(22)(31)(4)
  (11111)(2111)(221)(311)(32)(41)(5)
		

Crossrefs

Row lengths are A000041.
The dual version (sum/revlex) is A129129.
The constructive version is A193073.
Compositions under the same order are A228351.
The length-sensitive version is A334433.
The version for reversed (weakly increasing) partitions is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Row sums give A145519.

Programs

  • Maple
    T:= n-> map(p-> mul(ithprime(i), i=p), combinat[partition](n))[]:
    seq(T(n), n=0..8);  # Alois P. Heinz, Jan 26 2025
  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],lexsort],{n,0,8}]
    - or -
    Join@@Table[Times@@Prime/@#&/@Reverse[IntegerPartitions[n]],{n,0,8}]

Formula

A001222(a(n)) appears to be A049085(n).

A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 27, 22, 30, 28, 36, 40, 48, 64, 17, 35, 33, 45, 26, 50, 42, 54, 44, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 75, 63, 81, 34, 70, 66, 90, 52, 100, 84, 108, 88, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 02 2020

Keywords

Comments

First differs from A334435 at a(22) = 27, A334435(22) = 22.
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. For non-reversed partitions, see A129129 and A228531.
This is the so-called "Mathematica" order (A080577).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               54: {1,2,2,2}
    3: {2}           25: {3,3}             44: {1,1,5}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           27: {2,2,2}           56: {1,1,1,4}
    6: {1,2}         22: {1,5}             72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             75: {2,3,3}
   14: {1,4}         33: {2,5}             63: {2,2,4}
   18: {1,2,2}       45: {2,2,3}           81: {2,2,2,2}
   20: {1,1,3}       26: {1,6}             34: {1,7}
   24: {1,1,1,2}     50: {1,3,3}           70: {1,3,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  27  22  30  28  36  40  48  64
  17  35  33  45  26  50  42  54  44  60  56  72  80  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(22)(13)(112)(1111)
  (5)(23)(14)(122)(113)(1112)(11111)
		

Crossrefs

Row lengths are A000041.
Compositions under the same order are A066099 (triangle).
The version for non-reversed partitions is A129129.
The constructive version is A228531.
The lengths of these partitions are A333486.
The length-sensitive version is A334435.
The dual version (sum/lex) is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}]

Formula

A001222(a(n)) = A333486(n).

A334437 Heinz number of the n-th reversed integer partition in graded lexicographical order.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 10, 9, 7, 32, 24, 20, 18, 14, 15, 11, 64, 48, 40, 36, 28, 30, 22, 27, 21, 25, 13, 128, 96, 80, 72, 56, 60, 44, 54, 42, 50, 26, 45, 33, 35, 17, 256, 192, 160, 144, 112, 120, 88, 108, 84, 100, 52, 90, 66, 70, 34, 81, 63, 75, 39, 55, 49, 19
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. The non-reversed version is A334434.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of a reversed integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and reversed partitions.
Also Heinz numbers of partitions in colexicographic order (cf. A211992).
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 44: {1,1,5}
    2: {1}             64: {1,1,1,1,1,1}       54: {1,2,2,2}
    4: {1,1}           48: {1,1,1,1,2}         42: {1,2,4}
    3: {2}             40: {1,1,1,3}           50: {1,3,3}
    8: {1,1,1}         36: {1,1,2,2}           26: {1,6}
    6: {1,2}           28: {1,1,4}             45: {2,2,3}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       22: {1,5}               35: {3,4}
   12: {1,1,2}         27: {2,2,2}             17: {7}
   10: {1,3}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
    9: {2,2}           25: {3,3}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                160: {1,1,1,1,1,3}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    144: {1,1,1,1,2,2}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      112: {1,1,1,1,4}
   20: {1,1,3}         80: {1,1,1,1,3}        120: {1,1,1,2,3}
   18: {1,2,2}         72: {1,1,1,2,2}         88: {1,1,1,5}
   14: {1,4}           56: {1,1,1,4}          108: {1,1,2,2,2}
   15: {2,3}           60: {1,1,2,3}           84: {1,1,2,4}
Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12  10   9   7
   32  24  20  18  14  15  11
   64  48  40  36  28  30  22  27  21  25  13
  128  96  80  72  56  60  44  54  42  50  26  45  33  35  17
This corresponds to the following tetrangle:
                  0
                 (1)
               (11)(2)
             (111)(12)(3)
        (1111)(112)(13)(22)(4)
  (11111)(1112)(113)(122)(14)(23)(5)
		

Crossrefs

Row lengths are A000041.
The constructive version is A026791 (triangle).
The length-sensitive version is A185974.
Compositions under the same order are A228351 (triangle).
The version for non-reversed partitions is A334434.
The dual version (sum/revlex) is A334436.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n],lexsort],{n,0,8}]

Formula

A001222(a(n)) = A193173(n).

A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5
Offset: 0

Views

Author

Gus Wiseman, May 07 2020

Keywords

Comments

First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5).

Examples

			The sequence of all partitions begins:
  ()         (2,3)        (1,1,1,1,2)    (1,1,1,2,2)
  (1)        (1,1,3)      (1,1,1,1,1,1)  (1,1,1,1,1,2)
  (2)        (1,2,2)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (1,1,1,2)    (1,6)          (8)
  (3)        (1,1,1,1,1)  (2,5)          (1,7)
  (1,2)      (6)          (3,4)          (2,6)
  (1,1,1)    (1,5)        (1,1,5)        (3,5)
  (4)        (2,4)        (1,2,4)        (4,4)
  (1,3)      (3,3)        (1,3,3)        (1,1,6)
  (2,2)      (1,1,4)      (2,2,3)        (1,2,5)
  (1,1,2)    (1,2,3)      (1,1,1,4)      (1,3,4)
  (1,1,1,1)  (2,2,2)      (1,1,2,3)      (2,2,4)
  (5)        (1,1,1,3)    (1,2,2,2)      (2,3,3)
  (1,4)      (1,1,2,2)    (1,1,1,1,3)    (1,1,1,5)
This sequence can also be interpreted as the following triangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(13)(22)(112)(1111)
  (5)(14)(23)(113)(122)(1112)(11111)
Taking Heinz numbers (A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

Row lengths are A036043.
The version for reversed partitions is A334301.
The version for colex instead of revlex is A334302.
Taking Heinz numbers gives A334438.
The version with rows reversed is A334439.
Ignoring length gives A335122.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				
  • PARI
    A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - M. F. Hasler, May 14 2020

A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 2, 3, 2, 1, 5, 3, 4, 2, 3, 2, 1, 6, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 7, 4, 5, 6, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 8, 4, 5, 6, 7, 3, 4, 4, 5, 6, 2, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 9, 5, 6, 7, 8, 3, 4, 4, 5, 5, 6, 7, 3, 3, 4, 4, 5, 6, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, May 06 2020

Keywords

Comments

First differs from A049085 at a(8) = 2, A049085(8) = 3.
The parts of a partition are read in the usual (weakly decreasing) order. The version for reversed (weakly increasing) partitions is A049085.

Examples

			Triangle begins:
  0
  1
  2 1
  3 2 1
  4 2 3 2 1
  5 3 4 2 3 2 1
  6 3 4 5 2 3 4 2 3 2 1
  7 4 5 6 3 3 4 5 2 3 4 2 3 2 1
  8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1
		

Crossrefs

Row lengths are A000041.
The length of the same partition is A036043.
Ignoring partition length (sum/lex) gives A036043 also.
The version for reversed partitions is A049085.
a(n) is the maximum element in row n of A334301.
The number of distinct parts in the same partition is A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Partitions counted by sum and number of distinct parts are A116608.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}]

A334440 Irregular triangle T(n,k) read by rows: row n lists numbers of distinct parts of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 05 2020

Keywords

Comments

The total number of parts, counting duplicates, is A036043. The version for reversed partitions is A103921.

Examples

			Triangle begins:
  0
  1
  1 1
  1 2 1
  1 1 2 2 1
  1 2 2 2 2 2 1
  1 1 2 2 1 3 2 2 2 2 1
  1 2 2 2 2 2 3 2 2 3 2 2 2 2 1
  1 1 2 2 2 2 2 3 3 2 1 3 2 3 2 2 3 2 2 2 2 1
		

Crossrefs

Row lengths are A000041.
The number of not necessarily distinct parts is A036043.
The version for reversed partitions is A103921.
Ignoring length (sum/lex) gives A103921 (also).
a(n) is the number of distinct elements in row n of A334301.
The maximum part of the same partition is A334441.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Partitions counted by sum and number of distinct parts are A116608.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Join@@Table[Length/@Union/@Sort[IntegerPartitions[n]],{n,0,10}]

Formula

a(n) = A001221(A334433(n)).

A238966 The number of distinct primes in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 6, 7, 8, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Comments

After a(0) = 0, this appears to be the same as A128628. - Gus Wiseman, May 24 2020
Also the number of parts in the n-th integer partition in graded reverse-lexicographic order (A080577). - Gus Wiseman, May 24 2020

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  1, 2, 3;
  1, 2, 2, 3, 4;
  1, 2, 2, 3, 3, 4, 5;
  1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6;
  ...
		

Crossrefs

Row sums are A006128.
Cf. A036043 in canonical order.
Row lengths are A000041.
The generalization to compositions is A000120.
The sum of the partition is A036042.
The lexicographic version (sum/lex) is A049085.
Partition lengths of A080577.
The partition has A115623 distinct elements.
The Heinz number of the partition is A129129.
The colexicographic version (sum/colex) is A193173.
The maximum of the partition is A331581.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.

Programs

  • Maple
    o:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020
  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Table[Length/@Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 24 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    P[n_] := P[n] = Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
    T[n_, k_] := PrimeNu[P[n][[k + 1]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, Length[P[n]] - 1}] // Flatten (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz in A063008 *)
  • PARI
    Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

T(n,k) = A001221(A063008(n,k)). - Andrew Howroyd, Mar 25 2020
a(n) = A001222(A129129(n)). - Gus Wiseman, May 24 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (32)(41)(5)
  6: (321)(42)(51)(6)
  7: (421)(43)(52)(61)(7)
  8: (431)(521)(53)(62)(71)(8)
  9: (432)(531)(54)(621)(63)(72)(81)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]
Previous Showing 11-20 of 33 results. Next