cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A336422 Number of ways to choose a divisor of a divisor of n, both having distinct prime exponents.

Original entry on oeis.org

1, 3, 3, 6, 3, 5, 3, 10, 6, 5, 3, 13, 3, 5, 5, 15, 3, 13, 3, 13, 5, 5, 3, 24, 6, 5, 10, 13, 3, 7, 3, 21, 5, 5, 5, 21, 3, 5, 5, 24, 3, 7, 3, 13, 13, 5, 3, 38, 6, 13, 5, 13, 3, 24, 5, 24, 5, 5, 3, 20, 3, 5, 13, 28, 5, 7, 3, 13, 5, 7, 3, 42, 3, 5, 13, 13, 5, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.

Examples

			The a(n) ways for n = 1, 2, 4, 6, 8, 12, 30, 210:
  1/1/1  2/1/1  4/1/1  6/1/1  8/1/1  12/1/1    30/1/1  210/1/1
         2/2/1  4/2/1  6/2/1  8/2/1  12/2/1    30/2/1  210/2/1
         2/2/2  4/2/2  6/2/2  8/2/2  12/2/2    30/2/2  210/2/2
                4/4/1  6/3/1  8/4/1  12/3/1    30/3/1  210/3/1
                4/4/2  6/3/3  8/4/2  12/3/3    30/3/3  210/3/3
                4/4/4         8/4/4  12/4/1    30/5/1  210/5/1
                              8/8/1  12/4/2    30/5/5  210/5/5
                              8/8/2  12/4/4            210/7/1
                              8/8/4  12/12/1           210/7/7
                              8/8/8  12/12/2
                                     12/12/3
                                     12/12/4
                                     12/12/12
		

Crossrefs

A336421 is the case of superprimorials.
A007425 counts divisors of divisors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor with distinct prime exponents.
A336500 counts divisors with quotient also having distinct prime exponents.
A336568 = not a product of two numbers with distinct prime exponents.

Programs

  • Mathematica
    strdivs[n_]:=Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&];
    Table[Sum[Length[strdivs[d]],{d,strdivs[n]}],{n,30}]

A337070 Number of strict chains of divisors starting with the superprimorial A006939(n).

Original entry on oeis.org

1, 2, 16, 1208, 1383936, 32718467072, 20166949856488576, 391322675415566237681536
Offset: 0

Views

Author

Gus Wiseman, Aug 15 2020

Keywords

Comments

The n-th superprimorial is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(0) = 1 through a(2) = 16 chains:
  1  2    12
     2/1  12/1
          12/2
          12/3
          12/4
          12/6
          12/2/1
          12/3/1
          12/4/1
          12/4/2
          12/6/1
          12/6/2
          12/6/3
          12/4/2/1
          12/6/2/1
          12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939 (cf. A307895, A325337).
A336571 is the case with distinct prime multiplicities.
A336941 is the case ending with 1.
A337071 is the version for factorials.
A000005 counts divisors.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnsc[n_]:=If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]];
    Table[Length[chnsc[chern[n]]],{n,0,3}]

Formula

a(n) = 2*A336941(n) for n > 0.
a(n) = A067824(A006939(n)).

A095149 Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0

Views

Author

Gary W. Adamson, May 30 2004

Keywords

Comments

Or, prefix Aitken's array (A011971) with a leading diagonal of 0's and take the differences of each row to get the new triangle.
With offset 1, triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} in which k is the largest entry in the block containing 1 (1 <= k <= n). - Emeric Deutsch, Oct 29 2006
Row term sums = the Bell numbers starting with A000110(1): 1, 2, 5, 15, ...
The k-th term in the n-th row is the number of permutations of length n starting with k and avoiding the dashed pattern 23-1. Equivalently, the number of permutations of length n ending with k and avoiding 1-32. - Andrew Baxter, Jun 13 2011
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: Also the number of divisors d with distinct prime multiplicities of the superprimorial A006939(n) that are of the form d = m * 2^k where m is odd. For example, row n = 4 counts the following divisors:
1 2 4 8 16
3 18 12 24 48
5 50 20 40 80
7 54 28 56 112
9 1350 108 72 144
25 540 200 400
27 756 360 432
45 504 720
63 600 1008
75 1400 1200
135 2160
175 2800
189 3024
675 10800
4725 75600
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i whose nonzero values are distinct and such that v_n = k.
Crossrefs:
A008278 is the version counted by omega A001221.
A336420 is the version counted by Omega A001222.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by Omega.
A022915 counts permutations of prime indices of superprimorials.
A098859 counts partitions with distinct multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
(End)

Examples

			Triangle starts:
   1;
   1,  1;
   2,  1,  2;
   5,  2,  3,  5;
  15,  5,  7, 10, 15;
  52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
  {1}{234}      {12}{34}    {123}{4}    {1234}
  {1}{2}{34}    {12}{3}{4}  {13}{24}    {124}{3}
  {1}{23}{4}                {13}{2}{4}  {134}{2}
  {1}{24}{3}                            {14}{23}
  {1}{2}{3}{4}                          {14}{2}{3}
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
    Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
    A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
    # alternative Maple program:
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
        end:
    T:= (n, k)-> b(n, 0, n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 20 2018
  • Mathematica
    nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
  • Python
    # requires Python 3.2 or higher.
    from itertools import accumulate
    A095149_list, blist = [1,1,1], [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A095149_list += [blist[-1]]+ blist
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

With offset 1, T(n,1) = T(n,n) = T(n+1,2) = B(n-1) = A000110(n-1) (the Bell numbers). T(n,k) = T(n,k-1) + T(n-1,k-1) for n >= k >= 3. T(n,n-1) = B(n-1) - B(n-2) = A005493(n-3) for n >= 3 (B(q) are the Bell numbers A000110). T(n,k) = A011971(n-2,k-2) for n >= k >= 2. In other words, deleting the first row and first column we obtain Aitken's array A011971 (also called Bell or Pierce triangle; offset in A011971 is 0). - Emeric Deutsch, Oct 29 2006
T(n,1) = B(n-1); T(n,2) = B(n-2) for n >= 2; T(n,k) = Sum_{i=0..k-2} binomial(k-2,i)*B(n-2-i) for 3 <= k <= n, where B(q) are the Bell numbers (A000110). Generating polynomial of row n is P[n](t) = Q[n](t,1), where Q[n](t,s) = t^n*Q[n-1](1,s) + s*dQ[n-1](t,s)/ds + (s-1) Q[n-1](t,s); Q[1](t,s) = ts. - Emeric Deutsch, Oct 29 2006

Extensions

Corrected and extended by R. J. Mathar, Feb 05 2007
Entry revised by N. J. A. Sloane, Jun 01 2005, Jun 16 2007

A336421 Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).

Original entry on oeis.org

1, 3, 13, 76, 571, 5309, 59341, 780149
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2020

Keywords

Comments

A number has distinct prime exponents iff its prime signature is strict.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(2) = 13 ways:
  12/1/1  12/2/1  12/3/1  12/4/1  12/12/1
          12/2/2  12/3/3  12/4/2  12/12/2
                          12/4/4  12/12/3
                                  12/12/4
                                  12/12/12
		

Crossrefs

A000258 shifted once to the left is dominated by this sequence.
A336422 is the generalization to non-superprimorials.
A000110 counts divisors of superprimorials with distinct prime exponents.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[chern[n]],d_?strsig:>Count[Divisors[d],e_?strsig]]],{n,0,5}]

A336941 Number of strict chains of divisors starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 8, 604, 691968, 16359233536, 10083474928244288, 195661337707783118840768, 139988400203593571474134024847360, 4231553868972506381329450624389969130848256, 6090860257621637852755610879241895108657182173073604608, 464479854191019594417264488167571483344961210693790188774166838214656
Offset: 0

Views

Author

Gus Wiseman, Aug 13 2020

Keywords

Examples

			The a(2) = 8 chains:
  12/1
  12/2/1
  12/3/1
  12/4/1
  12/6/1
  12/4/2/1
  12/6/2/1
  12/6/3/1
		

Crossrefs

A022915 is the maximal case.
A076954 can be used instead of A006939.
A336571 is the case with distinct prime multiplicities.
A336942 is the case using members of A130091.
A337070 is the version ending with any divisor of A006939(n).
A000005 counts divisors.
A074206 counts chains of divisors from n to 1.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts divisor chains starting with n.
A181818 gives products of superprimorials, with complement A336426.
A253249 counts chains of divisors.
A317829 counts factorizations of superprimorials.
A336423 counts chains using A130091, with maximal case A336569.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]];
    Table[chns[chern[n]],{n,0,3}]
  • PARI
    a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A337070(n)/2 for n > 0.
a(n) = A074206(A006939(n)).

Extensions

Terms a(8) and beyond from Andrew Howroyd, Aug 30 2020

A336942 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 5, 95, 8823, 4952323, 20285515801, 714092378624317
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2020

Keywords

Examples

			The a(0) = 1 through a(2) = 5 chains:
  {1}  {2,1}  {12,1}
              {12,2,1}
              {12,3,1}
              {12,4,1}
              {12,4,2,1}
		

Crossrefs

A076954 can be used instead of A006939 (cf. A307895, A325337).
A336423 and A336571 are not restricted to A006939.
A336941 is the version not restricted by A130091.
A337075 is the version for factorials.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[chern[n]],{n,0,3}]

Formula

a(n) = A336423(A006939(n)) = A336571(A006939(n)).

A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 8, 11, 12, 11, 8, 4, 1, 1, 4, 8, 11, 12, 12, 12, 12, 11, 8, 4, 1, 1, 4, 8, 12, 16, 19, 20, 20, 19, 16, 12, 8, 4, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row n is row n! of A146291. Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  1
  1  2  2  2  1
  1  3  4  4  3  1
  1  3  5  6  6  5  3  1
  1  4  8 11 12 11  8  4  1
  1  4  8 11 12 12 12 12 11  8  4  1
  1  4  8 12 16 19 20 20 19 16 12  8  4  1
Row n = 6 counts the following divisors:
  1  2   4   8  16   48  144  720
     3   6  12  24   72  240
     5   9  18  36   80  360
        10  20  40  120
        15  30  60  180
            45  90
Row n = 7 counts the following divisors:
  1  2   4    8   16   48   144   720  5040
     3   6   12   24   72   240  1008
     5   9   18   36   80   336  1680
     7  10   20   40  112   360  2520
        14   28   56  120   504
        15   30   60  168   560
        21   42   84  180   840
        35   45   90  252  1260
             63  126  280
             70  140  420
            105  210  630
                 315
		

Crossrefs

A000720 is column k = 1.
A008302 is the version for superprimorials.
A022559 gives row lengths minus one.
A027423 gives row sums.
A146291 is the generalization to non-factorials.
A336499 is the restriction to divisors in A130091.
A000142 lists factorial numbers.
A336415 counts uniform divisors of n!.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]

A336499 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  0
  1  2  1  2  1
  1  3  1  3  2  0
  1  3  2  5  3  3  2  1
  1  4  2  7  4  4  3  2  0
  1  4  2  7  4  5  7  7  6  3  2  0
  1  4  2  8  8  9 10 11 11  7  8  5  2  0
  1  4  3 11  8 11 16 16 15 15 15 13  9  6  3  1
  1  5  3 14 10 13 21 21 20 19 21 18 13  9  5  2  0
  1  5  3 14 10 14 25 23 27 24 30 28 28 25 20 16 11  5  2  0
Row n = 7 counts the following divisors:
  1  2  4  8   16  48   144  720   {}
     3  9  12  24  72   360  1008
     5     18  40  80   504
     7     20  56  112
           28
           45
           63
		

Crossrefs

A000720 is column k = 1.
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336414 gives row sums.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]

A336871 Number of divisors d of A076954(n) with distinct prime multiplicities such that the numerator of A006939(n)/d also has distinct prime multiplicities.

Original entry on oeis.org

1, 2, 4, 11, 28, 96, 309, 1256, 4676, 21647
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2020

Keywords

Comments

The sequence A006939 is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
The sequence A076954 is A076954(n) = Product_{i=1..n} prime(i)^i.

Examples

			The a(0) = 1 through a(3) = 11 divisors:
  1  2  18   2250
     1   9   1125
         3    375
         1    125
               75
               45
               25
               18
                9
                5
                1
		

Crossrefs

A336419 is the version for superprimorials.
A336500 is the generalization to all positive integers.
A000005 counts divisors.
A006939 lists superprimorials or Chernoff numbers.
A007425 counts divisors of divisors.
A076954 is a sister of superprimorials.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327523 counts factorizations of elements of A130091 using elements of A130091.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    cochern[n_]:=Product[Prime[i]^i,{i,n}];
    Table[Length[Select[Divisors[cochern[n]],UnsameQ@@Last/@FactorInteger[#]&&UnsameQ@@Last/@FactorInteger[chern[n]/#]&]],{n,0,5}]
Previous Showing 11-19 of 19 results.