cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 76 results. Next

A347441 Number of odd-length factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) factorizations for n = 2, 8, 32, 48, 54, 72, 108:
  2   8       32          48          54      72          108
      2*2*2   2*2*8       2*4*6       2*3*9   2*6*6       2*6*9
              2*4*4       3*4*4       3*3*6   3*3*8       3*6*6
              2*2*2*2*2   2*2*12              2*2*18      2*2*27
                          2*2*2*2*3           2*3*12      2*3*18
                                              2*2*2*3*3   3*3*12
                                                          2*2*3*3*3
		

Crossrefs

The restriction to powers of 2 is A027193.
Positions of 1's are A167207 = A005117 \/ A001248.
Allowing any alternating product gives A339890.
Allowing even-length factorizations gives A347437.
The even-length instead of odd-length version is A347438.
The additive version is A347444, ranked by A347453.
A038548 counts possible reverse-alternating products of factorizations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347439 counts factorizations with integer reciprocal alternating product.
A347440 counts factorizations with alternating product < 1.
A347442 counts factorizations with integer reverse-alternating product.
A347456 counts factorizations with alternating product >= 1.
A347463 counts ordered factorizations with integer alternating product.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347441(n, m=n, ap=1, e=0) = if(1==n, (e%2)&&1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347441(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(2^n) = A027193(n).

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 22 2023

A347443 Number of integer partitions of n with reverse-alternating product <= 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0

Views

Author

Gus Wiseman, Sep 14 2021

Keywords

Comments

Includes all partitions of even length (A027187).
Also the number of integer partitions of n with reverse-alternating sum <= 1.
Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824).
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (2111)   (2211)    (331)      (71)
                            (11111)  (3111)    (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (211111)   (5111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The odd-length case is A035363 (shifted).
The strict case is A067661.
The non-reverse version is counted by A119620, ranked by A347466.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
The multiplicative version (factorizations) is A347438, non-reverse A339846.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
Ranked by A347465, non-reverse A347450.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A058622 counts compositions with alternating sum <= 0 (A294175 for < 0).
A100824 counts partitions with alternating sum <= 1.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]

Formula

a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by Georg Fischer, Dec 13 2022]
a(n) = A119620(n) + A344608(n).

A347450 Numbers whose multiset of prime indices has alternating product <= 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36, 38, 39, 40, 46, 49, 50, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 72, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 100, 104, 106, 111, 115, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also Heinz numbers integer partitions with reverse-alternating product <= 1, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers whose multiset of prime indices has alternating sum <= 1.

Examples

			The initial terms and their prime indices:
      1: {}            26: {1,6}           56: {1,1,1,4}
      2: {1}           32: {1,1,1,1,1}     57: {2,8}
      4: {1,1}         33: {2,5}           58: {1,10}
      6: {1,2}         34: {1,7}           60: {1,1,2,3}
      8: {1,1,1}       35: {3,4}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       64: {1,1,1,1,1,1}
     10: {1,3}         38: {1,8}           65: {3,6}
     14: {1,4}         39: {2,6}           69: {2,9}
     15: {2,3}         40: {1,1,1,3}       72: {1,1,1,2,2}
     16: {1,1,1,1}     46: {1,9}           74: {1,12}
     18: {1,2,2}       49: {4,4}           77: {4,5}
     21: {2,4}         50: {1,3,3}         81: {2,2,2,2}
     22: {1,5}         51: {2,7}           82: {1,13}
     24: {1,1,1,2}     54: {1,2,2,2}       84: {1,1,2,4}
     25: {3,3}         55: {3,5}           85: {3,7}
		

Crossrefs

The additive version (alternating sum <= 0) is A028260.
The reverse version is A028982, counted by A119620.
Allowing any alternating product < 1 gives A119899.
Factorizations of this type are counted by A339846, complement A339890.
Allowing any alternating product >= 1 gives A344609, multiplicative A347456.
Partitions of this type are counted by A347443.
Allowing any integer alternating product gives A347454, reciprocal A347451.
The complement is A347465, reverse A028983, counted by A347448.
A056239 adds up prime indices, row sums of A112798.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347457 lists Heinz numbers of partitions with integer alternating product.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]<=1&]

Formula

Union of A028982 and A119899.
Union of A028260 and A001105.

A349059 Number of weakly alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 18, 2, 3, 4, 8, 1, 11, 1, 16, 3, 3, 3, 22, 1, 3, 3, 18, 1, 11, 1, 8, 8, 3, 1, 38, 2, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 32, 1, 3, 8, 28, 3, 11, 1, 8, 3, 11, 1, 56, 1, 3, 8, 8, 3, 11, 1, 38, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30:
  (2)  (4)    (6)    (8)      (12)     (24)       (30)
       (2*2)  (2*3)  (2*4)    (2*6)    (3*8)      (5*6)
              (3*2)  (4*2)    (3*4)    (4*6)      (6*5)
                     (2*2*2)  (4*3)    (6*4)      (10*3)
                              (6*2)    (8*3)      (15*2)
                              (2*2*3)  (12*2)     (2*15)
                              (2*3*2)  (2*12)     (3*10)
                              (3*2*2)  (2*2*6)    (2*5*3)
                                       (2*4*3)    (3*2*5)
                                       (2*6*2)    (3*5*2)
                                       (3*2*4)    (5*2*3)
                                       (3*4*2)
                                       (4*2*3)
                                       (6*2*2)
                                       (2*2*2*3)
                                       (2*2*3*2)
                                       (2*3*2*2)
                                       (3*2*2*2)
		

Crossrefs

The strong version for compositions is A025047, also A025048, A025049.
The strong case is A348610, complement A348613.
The version for compositions is A349052, complement A349053.
As compositions these are ranked by the complement of A349057.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating permutations of prime factors, w/ twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 = factorizations w/ alternating permutation, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.
A349800 = weakly but not strongly alternating compositions, ranked A349799.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349052(n).

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020

A340656 Numbers without a twice-balanced factorization.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 42, 46, 48, 49, 51, 55, 57, 58, 60, 62, 64, 65, 66, 69, 70, 72, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 102, 105, 106, 108, 110, 111, 112, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
     4: {1,1}          33: {2,5}          64: {1,1,1,1,1,1}
     6: {1,2}          34: {1,7}          65: {3,6}
     8: {1,1,1}        35: {3,4}          66: {1,2,5}
     9: {2,2}          38: {1,8}          69: {2,9}
    10: {1,3}          39: {2,6}          70: {1,3,4}
    14: {1,4}          42: {1,2,4}        72: {1,1,1,2,2}
    15: {2,3}          46: {1,9}          74: {1,12}
    16: {1,1,1,1}      48: {1,1,1,1,2}    77: {4,5}
    21: {2,4}          49: {4,4}          78: {1,2,6}
    22: {1,5}          51: {2,7}          80: {1,1,1,1,3}
    25: {3,3}          55: {3,5}          81: {2,2,2,2}
    26: {1,6}          57: {2,8}          82: {1,13}
    27: {2,2,2}        58: {1,10}         84: {1,1,2,4}
    30: {1,2,3}        60: {1,1,2,3}      85: {3,7}
    32: {1,1,1,1,1}    62: {1,11}         86: {1,14}
For example, the factorizations of 48 with (2) and (3) equal are: (2*2*2*6), (2*2*3*4), (2*4*6), (3*4*4), but since none of these has length 2, the sequence contains 48.
		

Crossrefs

Positions of zeros in A340655.
The complement is A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]=={}&]

A340657 Numbers with a twice-balanced factorization.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 36, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 100, 101, 103, 104, 107, 109, 113, 116, 117, 120, 124, 127, 131, 135, 136, 137
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            29: {10}          59: {17}
      2: {1}           31: {11}          61: {18}
      3: {2}           36: {1,1,2,2}     63: {2,2,4}
      5: {3}           37: {12}          67: {19}
      7: {4}           40: {1,1,1,3}     68: {1,1,7}
     11: {5}           41: {13}          71: {20}
     12: {1,1,2}       43: {14}          73: {21}
     13: {6}           44: {1,1,5}       75: {2,3,3}
     17: {7}           45: {2,2,3}       76: {1,1,8}
     18: {1,2,2}       47: {15}          79: {22}
     19: {8}           50: {1,3,3}       83: {23}
     20: {1,1,3}       52: {1,1,6}       88: {1,1,1,5}
     23: {9}           53: {16}          89: {24}
     24: {1,1,1,2}     54: {1,2,2,2}     92: {1,1,9}
     28: {1,1,4}       56: {1,1,1,4}     97: {25}
The twice-balanced factorizations of 1920 (with prime indices {1,1,1,1,1,1,1,2,3}) are (8*8*30) and (8*12*20), so 1920 is in the sequence.
		

Crossrefs

The alt-balanced version is A340597.
Positions of nonzero terms in A340655.
The complement is A340656.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340653 counts balanced factorizations.
- A340654 counts cross-balanced factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],#=={}||Length[#]==PrimeNu[Times@@#]==Max[PrimeOmega/@#]&]!={}&]

A347448 Number of integer partitions of n with alternating product > 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(7) = 12 partitions:
  (2)  (3)   (4)    (5)     (6)      (7)
       (21)  (31)   (32)    (42)     (43)
             (211)  (41)    (51)     (52)
                    (311)   (222)    (61)
                    (2111)  (321)    (322)
                            (411)    (421)
                            (3111)   (511)
                            (21111)  (2221)
                                     (3211)
                                     (4111)
                                     (31111)
                                     (211111)
		

Crossrefs

The strict case is A000009, except that a(0) = a(1) = 0.
Allowing any alternating product >= 1 gives A000041, reverse A344607.
Ranked by A028983 (reverse A347465), which has complement A028982.
The complement is counted by A119620, reverse A347443.
The multiplicative version is A339890, weak A347456, reverse A347705.
The even-length case is A344608.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
The reverse version is A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.

Programs

  • Maple
    a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]):
    seq(a(n), n=0..63);  # Alois P. Heinz, Oct 04 2021
  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A119620(n).

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022
Previous Showing 31-40 of 76 results. Next