cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A346699 Sum of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 6, 4, 3, 2, 7, 3, 8, 4, 4, 5, 9, 3, 3, 6, 4, 5, 10, 4, 11, 3, 5, 7, 4, 3, 12, 8, 6, 4, 13, 5, 14, 6, 5, 9, 15, 4, 4, 4, 7, 7, 16, 4, 5, 5, 8, 10, 17, 4, 18, 11, 6, 3, 6, 6, 19, 8, 9, 5, 20, 4, 21, 12, 5, 9, 5, 7, 22, 5, 4
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition with Heinz number 1100 is (5,3,3,1,1), so a(1100) = 5 + 3 + 1 = 9.
The partition with Heinz number 2100 is (4,3,3,2,1,1), so a(2100) = 4 + 3 + 1 = 8.
		

Crossrefs

The version for standard compositions is A209281(n+1) (even: A346633).
Subtracting the even version gives A344616 (non-reverse: A316524).
The even version is A346700.
The non-reverse version (multisets instead of partitions) is A346697.
The even non-reverse version is A346698.
A001414 adds up prime factors, row sums of A027746.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Partition[Append[Reverse[primeMS[n]],0],2]],{n,100}]

Formula

a(n) = A056239(A346701(n)).
a(n) = A056239(n) - A346700(n).
a(n) = A344616(n) + A346700(n).
a(n odd omega) = A346697(n).
a(n even omega) = A346698(n).
A316524(n) = A346697(n) - A346698(n).

A347451 Numbers whose multiset of prime indices has integer reciprocal alternating product.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 14, 16, 18, 21, 22, 24, 25, 26, 32, 34, 36, 38, 39, 40, 46, 49, 50, 54, 56, 57, 58, 62, 64, 65, 72, 74, 81, 82, 84, 86, 87, 88, 90, 94, 96, 98, 100, 104, 106, 111, 115, 118, 121, 122, 126, 128, 129, 133, 134, 136, 142, 144, 146, 150, 152
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
Also Heinz numbers integer partitions with integer reverse-reciprocal alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The terms and their prime indices begin:
      1: {}            32: {1,1,1,1,1}       65: {3,6}
      2: {1}           34: {1,7}             72: {1,1,1,2,2}
      4: {1,1}         36: {1,1,2,2}         74: {1,12}
      6: {1,2}         38: {1,8}             81: {2,2,2,2}
      8: {1,1,1}       39: {2,6}             82: {1,13}
      9: {2,2}         40: {1,1,1,3}         84: {1,1,2,4}
     10: {1,3}         46: {1,9}             86: {1,14}
     14: {1,4}         49: {4,4}             87: {2,10}
     16: {1,1,1,1}     50: {1,3,3}           88: {1,1,1,5}
     18: {1,2,2}       54: {1,2,2,2}         90: {1,2,2,3}
     21: {2,4}         56: {1,1,1,4}         94: {1,15}
     22: {1,5}         57: {2,8}             96: {1,1,1,1,1,2}
     24: {1,1,1,2}     58: {1,10}            98: {1,4,4}
     25: {3,3}         62: {1,11}           100: {1,1,3,3}
     26: {1,6}         64: {1,1,1,1,1,1}    104: {1,1,1,6}
		

Crossrefs

The version for reversed prime indices is A028982, counted by A119620.
The additive version is A119899, strict A028260.
Allowing any alternating product >= 1 gives A344609.
Factorizations of this type are counted by A347439.
Allowing any alternating product <= 1 gives A347450.
The non-reciprocal version is A347454.
Allowing any alternating product > 1 gives A347465, reverse A028983.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433 lists numbers whose prime indices are separable, complement A335448.
A344606 counts alternating permutations of prime indices.
A347457 ranks partitions with integer alternating product.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],IntegerQ[1/altprod[primeMS[#]]]&]

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]

A357635 Numbers k such that the half-alternating sum of the partition having Heinz number k is 1.

Original entry on oeis.org

2, 8, 24, 32, 54, 128, 135, 162, 375, 384, 512, 648, 864, 875, 1250, 1715, 1944, 2048, 2160, 2592, 3773, 4374, 4802, 5000, 6000, 6144, 8192, 9317, 10368, 10935, 13122, 13824, 14000, 15000, 17303, 19208, 20000, 24167, 27440, 29282, 30375, 31104, 32768, 33750
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: {1}
    8: {1,1,1}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   54: {1,2,2,2}
  128: {1,1,1,1,1,1,1}
  135: {2,2,2,3}
  162: {1,2,2,2,2}
  375: {2,3,3,3}
  384: {1,1,1,1,1,1,1,2}
  512: {1,1,1,1,1,1,1,1,1}
  648: {1,1,1,2,2,2,2}
  864: {1,1,1,1,1,2,2,2}
  875: {3,3,3,4}
		

Crossrefs

The version for k = 0 is A000583, standard compositions A357625-A357626.
The version for original alternating sum is A345958.
Positions of ones in A357633, non-reverse A357629.
The skew version for k = 0 is A357636, non-reverse A357632.
These partitions are counted by A035444, skew A035544.
The non-reverse version is A357851, k = 0 version A357631.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even-length A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[1000],halfats[Reverse[primeMS[#]]]==1&]

A100824 Number of partitions of n with at most one odd part.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 3, 7, 5, 12, 7, 19, 11, 30, 15, 45, 22, 67, 30, 97, 42, 139, 56, 195, 77, 272, 101, 373, 135, 508, 176, 684, 231, 915, 297, 1212, 385, 1597, 490, 2087, 627, 2714, 792, 3506, 1002, 4508, 1255, 5763, 1575, 7338, 1958, 9296, 2436, 11732, 3010, 14742
Offset: 0

Views

Author

Vladeta Jovovic, Jan 13 2005

Keywords

Comments

From Gus Wiseman, Jan 21 2022: (Start)
Also the number of integer partitions of n with alternating sum <= 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These are the conjugates of partitions with at most one odd part. For example, the a(1) = 1 through a(9) = 12 partitions with alternating sum <= 1 are:
1 11 21 22 32 33 43 44 54
111 1111 221 2211 331 2222 441
2111 111111 2221 3311 3222
11111 3211 221111 3321
22111 11111111 4311
211111 22221
1111111 33111
222111
321111
2211111
21111111
111111111
(End)

Examples

			From _Gus Wiseman_, Jan 21 2022: (Start)
The a(1) = 1 through a(9) = 12 partitions with at most one odd part:
  (1)  (2)  (3)   (4)   (5)    (6)    (7)     (8)     (9)
            (21)  (22)  (32)   (42)   (43)    (44)    (54)
                        (41)   (222)  (52)    (62)    (63)
                        (221)         (61)    (422)   (72)
                                      (322)   (2222)  (81)
                                      (421)           (432)
                                      (2221)          (441)
                                                      (522)
                                                      (621)
                                                      (3222)
                                                      (4221)
                                                      (22221)
(End)
		

Crossrefs

The case of alternating sum 0 (equality) is A000070.
A multiplicative version is A339846.
These partitions are ranked by A349150, conjugate A349151.
A000041 = integer partitions, strict A000009.
A027187 = partitions of even length, strict A067661, ranked by A028260.
A027193 = partitions of odd length, ranked by A026424.
A058695 = partitions of odd numbers.
A103919 = partitions by sum and alternating sum (reverse: A344612).
A277103 = partitions with the same number of odd parts as their conjugate.

Programs

  • Maple
    seq(coeff(convert(series((1+x/(1-x^2))/mul(1-x^(2*i),i=1..100),x,100),polynom),x,n),n=0..60); (C. Ronaldo)
  • Mathematica
    nmax = 50; CoefficientList[Series[(1+x/(1-x^2)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]<=1&]],{n,0,30}] (* _Gus Wiseman, Jan 21 2022 *)
  • PARI
    a(n) = if(n%2==0, numbpart(n/2), sum(i=1, (n+1)\2, numbpart((n-2*i+1)\2))) \\ David A. Corneth, Jan 23 2022

Formula

G.f.: (1+x/(1-x^2))/Product(1-x^(2*i), i=1..infinity). More generally, g.f. for number of partitions of n with at most k odd parts is (1+Sum(x^i/Product(1-x^(2*j), j=1..i), i=1..k))/Product(1-x^(2*i), i=1..infinity).
a(n) ~ exp(sqrt(n/3)*Pi) / (2*sqrt(3)*n) if n is even and a(n) ~ exp(sqrt(n/3)*Pi) / (2*Pi*sqrt(n)) if n is odd. - Vaclav Kotesovec, Mar 07 2016
a(2*n) = A000041(n). a(2*n + 1) = A000070(n). - David A. Corneth, Jan 23 2022

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A345961 Numbers whose prime indices have reverse-alternating sum 2.

Original entry on oeis.org

3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly two odd conjugate prime indices. The restriction to odd omega is A345960, and the restriction to even omega is A345962.

Examples

			The initial terms and their prime indices:
    3: {2}
   10: {1,3}
   12: {1,1,2}
   21: {2,4}
   27: {2,2,2}
   30: {1,2,3}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   55: {3,5}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
		

Crossrefs

Below we use k to indicate reverse-alternating sum.
The k > 0 version is A000037.
These multisets are counted by A000097.
The k = 0 version is A000290, counted by A000041.
These partitions are counted by A120452 (negative: A344741).
These are the positions of 2's in A344616.
The k = -1 version is A345912.
The k = 1 version is A345958.
The unreversed version is A345960 (negative: A345962).
A000070 counts partitions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A088218 also counts compositions with alternating sum 0, ranked by A344619.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==2&]

A329888 a(n) = A329900(A329602(n)); Heinz number of the even bisection (even-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 5, 2, 3, 2, 1, 3, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 7, 5, 3, 2, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 3, 8, 5, 3, 1, 2, 3, 5, 1, 6, 1, 2, 5, 2, 7, 3, 1, 4, 9, 2, 1, 6, 5, 2, 3, 4, 1, 6, 7, 2, 3, 2, 5, 8, 1, 7, 3, 10, 1, 3, 1, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

From Gus Wiseman, Aug 05 2021 and Antti Karttunen, Oct 13 2021: (Start)
Also the product of primes at even positions in the weakly decreasing list (with multiplicity) of prime factors of n. For example, the prime factors of 108 are (3,3,3,2,2), with even bisection (3,2), with product 6, so a(108) = 6.
Proof: A108951(n) gives a number with the same largest prime factor (A006530) and its exponent (A071178) as in n, and with each smaller prime p = 2, 3, 5, 7, ... < A006530(n) having as its exponent the partial sum of the exponents of all prime factors >= p present in n (with primes not present in n having the exponent 0). Then applying A000188 replaces each such "partial sum exponent" k with floor(k/2). Finally, A319626 replaces those halved exponents with their first differences (here the exponent of the largest prime present stays intact, because the next larger prime's exponent is 0 in n). It should be easy to see that if prime q is not present in n (i.e., does not divide it), then neither it is present in a(n). Moreover, if the partial sum exponent of q is odd and only one larger than the partial sum exponent of the next larger prime factor of n, then q will not be present in a(n), while in all other cases q is present in a(n). See also the last example.
(End)

Examples

			From _Gus Wiseman_, Aug 15 2021: (Start)
The list of all numbers with image 12 and their corresponding prime factors begins:
  144: (3,3,2,2,2,2)
  216: (3,3,3,2,2,2)
  240: (5,3,2,2,2,2)
  288: (3,3,2,2,2,2,2)
  336: (7,3,2,2,2,2)
  360: (5,3,3,2,2,2)
(End)
The positions from the left are indexed as 1, 2, 3, ..., etc, so e.g., for 240 we pick the second, the fourth and the sixth prime factor, 3, 2 and 2, to obtain a(240) = 3*2*2 = 12. For 288, we similarly pick the second (3), the fourth (2) and the sixth (2) to obtain a(288) = 3*2*2 = 12. - _Antti Karttunen_, Oct 13 2021
Consider n = 11945934 = 2*3*3*3*7*11*13*13*17. Its primorial inflation is A108951(11945934) = 96478365991115908800000 = 2^9 * 3^8 * 5^5 * 7^5 * 11^4 * 13^3 * 17^1. Applying A000188 to this halves each exponent (floored down if the exponent is odd), leaving the factors 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 = 2497294800. Then applying A319626 to this number retains the largest prime factor (and its exponent), and subtracts from the exponent of each of the rest of primes the exponent of the next larger prime, so from 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 we get 2^(4-4) * 3^(4-2) * 5^(2-2) * 7^(2-2) * 11^(2-1) * 13^1 = 3^2 * 11^1 * 13^1 = 1287 = a(11945934), which is obtained also by selecting every second prime from the list [17, 13, 13, 11, 7, 3, 3, 3, 2] and taking their product. - _Antti Karttunen_, Oct 15 2021
		

Crossrefs

A left inverse of A000290.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346700(n).
The odd version is A346701.
The odd non-reverse version is A346703.
The non-reverse version is A346704.
The version for standard compositions is A346705, odd A346702.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A001414 adds up prime factors, row sums of A027746.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A346633 adds up the even bisection of standard compositions.
A346698 adds up the even bisection of prime indices.

Programs

  • Mathematica
    Table[Times@@Last/@Partition[Reverse[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]],2],{n,100}] (* Gus Wiseman, Oct 13 2021 *)
  • PARI
    A329888(n) = A329900(A329602(n));
    
  • PARI
    A329888(n) = if(1==n,n,my(f=factor(n),m=1,p=0); forstep(k=#f~,1,-1,while(f[k,2], m *= f[k,1]^(p%2); f[k,2]--; p++)); (m)); \\ (After Wiseman's new interpretation) - Antti Karttunen, Sep 21 2021

Formula

A108951(a(n)) = A329602(n).
a(n^2) = n for all n >= 1.
a(n) * A346701(n) = n. - Gus Wiseman, Aug 07 2021
A056239(a(n)) = A346700(n). - Gus Wiseman, Aug 07 2021
Antti Karttunen, Sep 21 2021
From Antti Karttunen, Oct 13 2021: (Start)
For all x in A102750, a(x) = a(A253553(x)). (End)

Extensions

Name amended with Gus Wiseman's new interpretation - Antti Karttunen, Oct 13 2021

A346701 Heinz number of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 4, 17, 6, 19, 10, 7, 11, 23, 6, 5, 13, 9, 14, 29, 10, 31, 8, 11, 17, 7, 6, 37, 19, 13, 10, 41, 14, 43, 22, 15, 23, 47, 12, 7, 10, 17, 26, 53, 9, 11, 14, 19, 29, 59, 10, 61, 31, 21, 8, 13, 22, 67, 34, 23, 14, 71
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition (2,2,2,1,1) has Heinz number 108 and odd bisection (2,2,1) with Heinz number 18, so a(108) = 18.
The partitions (3,2,2,1,1), (3,2,2,2,1), (3,3,2,1,1) have Heinz numbers 180, 270, 300 and all have odd bisection (3,2,1) with Heinz number 30, so a(180) = a(270) = a(300) = 30.
		

Crossrefs

Positions of last appearances are A000290 without the first term 0.
Positions of primes are A037143 (complement: A033942).
The even version is A329888.
Positions of first appearances are A342768.
The sum of prime indices of a(n) is A346699(n), non-reverse: A346697.
The non-reverse version is A346703.
The even non-reverse version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A209281 (shifted) adds up the odd bisection of standard compositions.
A316524 gives the alternating sum of prime indices, reverse A344616.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@First/@Partition[Append[Reverse[primeMS[n]],0],2],{n,100}]

Formula

a(n) * A329888(n) = n.
A056239(a(n)) = A346699(n).

A345960 Numbers whose prime indices have alternating sum 2.

Original entry on oeis.org

3, 12, 27, 30, 48, 70, 75, 108, 120, 147, 154, 192, 243, 270, 280, 286, 300, 363, 432, 442, 480, 507, 588, 616, 630, 646, 675, 750, 768, 867, 874, 972, 1080, 1083, 1120, 1144, 1200, 1323, 1334, 1386, 1452, 1470, 1587, 1728, 1750, 1768, 1798, 1875, 1920, 2028
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with odd Omega (A001222) and exactly two odd conjugate prime indices. The version for even Omega is A345962, and the union is A345961. Conjugate prime indices are listed by A321650 and ranked by A122111.

Examples

			The initial terms and their prime indices:
    3: {2}
   12: {1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   48: {1,1,1,1,2}
   70: {1,3,4}
   75: {2,3,3}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  147: {2,4,4}
  154: {1,4,5}
  192: {1,1,1,1,1,1,2}
  243: {2,2,2,2,2}
  270: {1,2,2,2,3}
  280: {1,1,1,3,4}
  286: {1,5,6}
  300: {1,1,2,3,3}
		

Crossrefs

These partitions are counted by A000097.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105 (reverse: A345958).
The k > 0 version is A026424.
These multisets are counted by A120452.
These are the positions of 2's in A316524 (reverse: A344616).
The k = -1 version is A345959.
The version for reversed alternating sum is A345961.
The k = -2 version is A345962.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==2&]

A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2021

Keywords

Comments

This is the sorted version of A342768(n) = position of first appearance of n in A346701 (but A346703 works also).

Examples

			The terms together with their prime indices begin:
     1: {}          31: {11}            71: {20}
     2: {1}         32: {1,1,1,1,1}     73: {21}
     3: {2}         37: {12}            76: {1,1,8}
     5: {3}         41: {13}            79: {22}
     7: {4}         43: {14}            80: {1,1,1,1,3}
     8: {1,1,1}     44: {1,1,5}         83: {23}
    11: {5}         45: {2,2,3}         89: {24}
    12: {1,1,2}     47: {15}            92: {1,1,9}
    13: {6}         48: {1,1,1,1,2}     97: {25}
    17: {7}         52: {1,1,6}         99: {2,2,5}
    19: {8}         53: {16}           101: {26}
    20: {1,1,3}     59: {17}           103: {27}
    23: {9}         61: {18}           107: {28}
    27: {2,2,2}     63: {2,2,4}        108: {1,1,2,2,2}
    28: {1,1,4}     67: {19}           109: {29}
    29: {10}        68: {1,1,7}        112: {1,1,1,1,4}
		

Crossrefs

Removing 1 gives a subset of A026424.
The unsorted even version is A129597.
The unsorted version is A342768(n) = A342767(n,n).
Except the first term, the even version is 2*a(n).
A000290 lists squares.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A006530 gives the greatest prime factor.
A061395 gives the greatest prime index.
A027193 counts partitions of odd length.
A056239 adds up prime indices, row sums of A112798.
A209281 = odd bisection sum of standard compositions (even: A346633).
A316524 = alternating sum of prime indices (sign: A344617, rev.: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A346697 = odd bisection sum of prime indices (weights of A346703).
A346699 = odd bisection sum of reversed prime indices (weights of A346701).

Programs

  • Maple
    filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Nov 26 2022
  • Mathematica
    sqrQ[n_]:=IntegerQ[Sqrt[n]];
    Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&]
  • PARI
    isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ Michel Marcus, Aug 12 2021

Formula

a(n) = A129597(n)/2 for n > 1.
Previous Showing 11-20 of 27 results. Next