cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 65 results. Next

A075435 T(n,k) = right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal at k points between start and finish.

Original entry on oeis.org

2, 6, 4, 20, 24, 8, 70, 116, 72, 16, 252, 520, 456, 192, 32, 924, 2248, 2496, 1504, 480, 64, 3432, 9520, 12624, 9728, 4480, 1152, 128, 12870, 39796, 60792, 56400, 33440, 12480, 2688, 256, 48620, 164904, 283208, 304704, 218720, 105600, 33152, 6144
Offset: 2

Views

Author

Wouter Meeussen, Sep 15 2002

Keywords

Comments

If it is required that the paths stay at the same side of the diagonal between intermediate points, then the count of intermediate points becomes an exact count of crossings and one gets table A039598.
T is the convolution triangle of the central binomial coefficients. - Peter Luschny, Oct 19 2022

Examples

			{2},
{6, 4},
{20, 24, 8},
{70, 116, 72, 16},
{252, 520, 456, 192, 32},
...
		

Crossrefs

Row sums give A075436.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*n, n)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}]
  • Maxima
    T(n,m):=sum(k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1),k,m,n); /* Vladimir Kruchinin, Mar 30 2011 */
    
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 2^n
        if k==0: return 0
        return sum(binomial(2*i,i)*T(k-1,n-i) for i in (1..n-k+1))
    A075435 = lambda n,k: T(k,n)
    for n in (1..9): print([A075435(n,k) for k in (1..n)]) # Peter Luschny, Mar 12 2016

Formula

G.f.: [2*x*c(x)/(1-x*c(x))]^m=sum(n>=m T(n,m)*x^n) where c(x) is the g.f. of A000108, also T(n,m)=sum(k=m..n, k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1)), n>=m>0. [Vladimir Kruchinin, Mar 30 2011]

A105495 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when parts equal to q are of q^2 kinds.

Original entry on oeis.org

1, 4, 1, 9, 8, 1, 16, 34, 12, 1, 25, 104, 75, 16, 1, 36, 259, 328, 132, 20, 1, 49, 560, 1134, 752, 205, 24, 1, 64, 1092, 3312, 3338, 1440, 294, 28, 1, 81, 1968, 8514, 12336, 7815, 2456, 399, 32, 1, 100, 3333, 19800, 39572, 35004, 15765, 3864, 520, 36, 1, 121, 5368
Offset: 1

Views

Author

Emeric Deutsch, Apr 10 2005

Keywords

Comments

Triangle T(n,k)=
1. Riordan Array (1,(x+x^2)/(1-x)^3) without first column.
2. Riordan Array ((1+x)/(1-x)^3,(x+x^2)/(1-x)^3) numbering triangle (0,0).
[Vladimir Kruchinin, Nov 25 2011]
Triangle T(n,k), 1<=k<=n, given by (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 20 2012
T is the convolution triangle of the squares (A000290). - Peter Luschny, Oct 19 2022

Examples

			T(3,2)=8 because we have (1,2),(1,2'),(1,2"),(1,2'"),(2,1),(2',1),(2",1) and (2'",1).
Triangle begins:
  1;
  4,1;
  9,8,1;
  16,34,12,1;
  25,104,75,16,1;
  ...
Triangle (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
  1
  0, 1
  0, 4, 1
  0, 9, 8, 1
  0, 16, 34, 12, 1
  0, 25, 104, 75, 16, 1
  ...
		

Crossrefs

Row sums yield A033453.

Programs

  • Maple
    G:=t*z*(1+z)/((1-z)^3-t*z*(1+z)): Gser:=simplify(series(G,z=0,13)): for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 11 do seq(coeff(P[n],t^k), k=1..n) od; # yields sequence in triangular form
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else add(i^2*T(k-1,n-i), i=1..n-k+1) fi end:
    A105495 := (n,k) -> T(k,n):
    for n from 1 to 9 do seq(A105495(n,k), k=1..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> n^2); # Peter Luschny, Oct 19 2022
  • Mathematica
    nn=8;a=(x+x^2)/(1-x)^3;CoefficientList[Series[1/(1-y a),{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Aug 31 2012 *)
  • Maxima
    T(n,k):=sum(binomial(k,i)*binomial(n+2*k-i-1,3*k-1),i,0,n-k); /* Vladimir Kruchinin, Nov 25 2011 */
    
  • SageMath
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i^2*T(k-1,n-i) for i in (1..n-k+1))
    A105495 = lambda n,k: T(k, n)
    for n in (0..6): print([A105495(n, k) for k in (0..n)]) # Peter Luschny, Mar 12 2016

Formula

G.f.: t*z*(1+z)/((1-z)^3-t*z*(1+z)).
From Vladimir Kruchinin, Nov 25 2011: (Start)
G.f.: ((x+x^2)/(1-x)^3)^k = Sum_{n>=k} T(n,k)*x^n.
T(n,k) = Sum{i=0..n-k} binomial(k,i)*binomial(n+2*k-i-1,3*k-1). (End)

A127898 Inverse of Riordan array (1/(1+x)^3, x/(1+x)^3).

Original entry on oeis.org

1, 3, 1, 12, 6, 1, 55, 33, 9, 1, 273, 182, 63, 12, 1, 1428, 1020, 408, 102, 15, 1, 7752, 5814, 2565, 760, 150, 18, 1, 43263, 33649, 15939, 5313, 1265, 207, 21, 1, 246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

The convolution triangle of A001764 (number of ternary trees). - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
1,
3, 1,
12, 6, 1,
55, 33, 9, 1,
273, 182, 63, 12, 1,
1428, 1020, 408, 102, 15, 1,
7752, 5814, 2565, 760, 150, 18, 1,
43263, 33649, 15939, 5313, 1265, 207, 21, 1,
246675, 197340, 98670, 35880, 9750, 1950, 273, 24, 1,
1430715, 1170585, 610740, 237510, 71253, 16443, 2842, 348, 27, 1,
8414640, 7012200, 3786588, 1553472, 503440, 129456, 26040, 3968, 432, 30, 1
		

Crossrefs

First column is A001764(n+1).
Row sums are A047099.
Inverse of A127895.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(k+1)/(n+1)*Binomial(3*n+3,n-k)))); # Muniru A Asiru, Apr 30 2018
  • Magma
    /* As triangle: */ [[(k+1)/(n+1)*Binomial(3*n+3,n-k): k in [0..n]]: n in [0..8]];  // Bruno Berselli, Jan 17 2013
    
  • Maple
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> binomial(3*n, n)/(2*n+1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[If[k == 0, Binomial[3*n, n-k]/(2*n+1), ((k+1)/n)*Binomial[3*n, n-k -1]], {n,1,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Apr 29 2018 *)
  • PARI
    for(n=1,10, for(k=0,n-1, print1(if(k==0, binomial(3*n, n-k)/( 2*n +1), ((k+1)/n)*binomial(3*n, n-k-1)), ", "))) \\ G. C. Greubel, Apr 29 2018
    

Formula

T(n,k) = (k+1)/(n+1)*binomial(3*n+3,n-k). - Vladimir Kruchinin, Jan 17 2013
G.f.: 1/(-y + 1/(-1 + (2*sin(1/3 *arcsin((3*sqrt(3*x))/2)))/(
sqrt(3*x))))/x. - Vladimir Kruchinin, Feb 14 2023

A206306 Riordan array (1, x/(1-3*x+2*x^2)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 06 2012

Keywords

Comments

The convolution triangle of the Mersenne numbers A000225. - Peter Luschny, Oct 09 2022

Examples

			Triangle begins:
  1;
  0,    1;
  0,    3,    1;
  0,    7,    6,     1;
  0,   15,   23,     9,     1;
  0,   31,   72,    48,    12,     1;
  0,   63,  201,   198,    82,    15,    1;
  0,  127,  522,   699,   420,   125,   18,    1;
  0,  255, 1291,  2223,  1795,   765,  177,   21,   1;
  0,  511, 3084,  6562,  6768,  3840, 1260,  238,  24,  1;
  0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27,  1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // T = A206306
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return 0;
      else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
  • SageMath
    def T(n,k): # T = A206306
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022

Formula

Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A204089(n), A204091(n) for x = 0, 1, 2 respectively.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)

A357583 Triangle read by rows. Convolution triangle of the Bell numbers.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 15, 14, 6, 1, 0, 52, 50, 27, 8, 1, 0, 203, 189, 113, 44, 10, 1, 0, 877, 764, 471, 212, 65, 12, 1, 0, 4140, 3311, 2013, 974, 355, 90, 14, 1, 0, 21147, 15378, 8951, 4440, 1790, 550, 119, 16, 1, 0, 115975, 76418, 41745, 20526, 8727, 3027, 805, 152, 18, 1
Offset: 0

Views

Author

Peter Luschny, Oct 05 2022

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0,     1;
  [2] 0,     2,     1;
  [3] 0,     5,     4,    1;
  [4] 0,    15,    14,    6,    1;
  [5] 0,    52,    50,   27,    8,    1;
  [6] 0,   203,   189,  113,   44,   10,   1;
  [7] 0,   877,   764,  471,  212,   65,  12,   1;
  [8] 0,  4140,  3311, 2013,  974,  355,  90,  14,  1;
  [9] 0, 21147, 15378, 8951, 4440, 1790, 550, 119, 16, 1;
		

Crossrefs

Cf. A000110, A129247 (row sums), A007311, A357584 (central terms).

Programs

  • Maple
    # Using function PMatrix from A357368.
    PMatrix(10, combinat[bell]);

Formula

Conjecture: row polynomials are x*R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) + x*R(n-1,1)*R(1,k) for n > 1, k > 0 with R(1,k) = Bell(k) for k > 0. The same recursion seems to work for self-convolution of any other sequence. - Mikhail Kurkov, Apr 05 2025

A128627 Triangle read by rows. Convolution triangle based on A002865.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 3, 0, 1, 2, 5, 3, 4, 0, 1, 4, 6, 9, 4, 5, 0, 1, 4, 13, 12, 14, 5, 6, 0, 1, 7, 16, 28, 20, 20, 6, 7, 0, 1, 8, 30, 39, 50, 30, 27, 7, 8, 0, 1, 12, 40, 78, 76, 80, 42, 35, 8, 9, 0, 1, 14, 66, 115, 161, 130, 119, 56, 44, 9, 10, 0, 1
Offset: 1

Views

Author

Alford Arnold, Mar 22 2007

Keywords

Comments

Triangular array illustrating the application of cyclic partitions to the computation of partitions of an integer into parts of k kinds (cf. A060850).
The array is constructed by summing sequences associated with each cyclic partition as indicated below: (n' here denotes the sum of preceding sequences).
4 1 2 3
22 1 3 6
4' 2 5 9
5 1 2 3 4
32 1 4 9 16
5' 2 6 12 20
6 1 2 3 4 5 6 7 8 9
42 1 4 9 16 25 36 49 64 81
33 1 3 6 10 15 21 28 36 45
222 1 4 10 20 35 56 84 120 165
6' 4 13 28 50 80 119 168 228 300
7 1 2 3 4 5 6 7 8 9
52 1 4 9 16 25 36 49 64 81
43 1 4 9 16 25 36 49 64 81
322 1 6 18 40 75 126 196 288 405
7' 4 16 39 76 130 204 301 424 576
8 1 2 3 4 5 6 7 8 9
62 1 4 9 16 25 36 49 64 81
53 1 4 9 16 25 36 49 64 81
44 1 3 6 10 15 21 28 36 45
422 1 6 18 40 75 126 196 288 405
332 1 6 18 40 75 126 196 288 405
2222 1 5 15 35 70 126 210 330 495
8' 7 30 78 161 290 477 735 1078 1521

Examples

			The diagonal 9th diagonal of A060850 is 22 185 810 2580 6765 ... and can be computed from a(n) and A007318 as illustrated:
   1
   0    1
   1    0    1
   1    2    0    1
   2    2    3    0
   2    5    3    4
   4    6    9    4
   4   13   12   14
   7   16   28   20
       30   39   50
            78   76
                161
times
   1
   1    9
   1    8   45
   1    7   36  165
   1    6   28  120
   1    5   21   84
   1    4   15   56
   1    3   10   35
   1    2    6   20
        1    3   10
             1    4
                  1
yields
   1
   0    9
   1    0   45
   1   14    0  165
   2   12   84    0
   2   25   63  336
   4   24  135  224
   4   39  120  490
   7   32  168  400
       30  117  500
            78  304
                161
summing to
  22  185  810 2580 ...
Triangle T(n, k) starts:
  [ 1] 1;
  [ 2] 0,  1;
  [ 3] 1,  0,  1;
  [ 4] 1,  2,  0,  1;
  [ 5] 2,  2,  3,  0,  1;
  [ 6] 2,  5,  3,  4,  0,  1;
  [ 7] 4,  6,  9,  4,  5,  0,  1;
  [ 8] 4, 13, 12, 14,  5,  6,  0,  1;
  [ 9] 7, 16, 28, 20, 20,  6,  7,  0,  1;
  [10] 8, 30, 39, 50, 30, 27,  7,  8,  0,  1;
		

Crossrefs

Programs

  • Maple
    # Using function A002865 and function PMatrix from A357368.
    A128627Triangle := proc(dim) local M, Row, r;
    M := PMatrix(dim, n -> A002865(n-1));
    Row := r -> convert(linalg:-row(M, r), list)[2..r];
    for r from 2 to dim do lprint(Row(r)) od end:
    A128627Triangle(11); # Peter Luschny, Oct 03 2022

Extensions

New name by Peter Luschny, Oct 03 2022

A188285 Riordan matrix ( (1-2x)/(1-2x-x^2), (x-2x^2)/(1-2x-x^2) ).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 5, 4, 3, 0, 1, 12, 11, 6, 4, 0, 1, 29, 28, 18, 8, 5, 0, 1, 70, 72, 48, 26, 10, 6, 0, 1, 169, 184, 130, 72, 35, 12, 7, 0, 1, 408, 469, 348, 204, 100, 45, 14, 8, 0, 1, 985, 1192, 927, 568, 295, 132, 56, 16, 9, 0, 1, 2378, 3022, 2456, 1571, 850, 404, 168, 68, 18, 10, 0, 1, 5741, 7644, 6477, 4312, 2430, 1200, 532, 208, 81, 20, 11, 0, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 26 2011

Keywords

Comments

T(n,k) is the number of Dyck paths of height at most 3 with length 2n and k hills.
Row sum = F_(2n-1) Fibonacci number.
T is the convolution triangle of |A215936|. - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
1
0, 1
1, 0, 1
2, 2, 0, 1
5, 4, 3, 0, 1
12, 11, 6, 4, 0, 1
29, 28, 18, 8, 5, 0, 1
70, 72, 48, 26, 10, 6, 0, 1
169, 184, 130, 72, 35, 12, 7, 0, 1
408, 469, 348, 204, 100, 45, 14, 8, 0, 1
		

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> (-1)^(n+1)*A215936(n)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[Table[Sum[Pochhammer[i,n-k-2i]/(n-k-2i)!Binomial[i+k,k]2^(n-k-2i),{i,0,(n-k)/2}],{n,0,12},{k,0,n}],1]
  • Maxima
    create_list(sum(pochhammer(i,n-k-2*i)/(n-k-2*i)!*binomial(i+k,k)*2^(n-k-2*i),i,0,(n-k)/2),n,0,12,k,0,n);

Formula

T(n,k) = sum(M(i,n-k-2i)*Binomial(i+k,k)*2^{n-k-2i},i=0..floor((n-k)/2)), where M(n,k)=n(n+1)(n+2)...(n+k-1)/k!.
Recurrence: T(n+2,k+1) = 2 T(n+1,k+1) + T(n+1,k) + T(n,k+1) - 2 T(n,k)

A202191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^3)]^m = sum(n>=m, T(n,m) x^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 4, 11, 13, 10, 5, 1, 6, 18, 27, 24, 15, 6, 1, 9, 30, 51, 55, 40, 21, 7, 1, 13, 50, 94, 116, 100, 62, 28, 8, 1, 19, 81, 171, 234, 231, 168, 91, 36, 9, 1, 28, 130, 303, 460, 505, 420, 266, 128, 45, 10, 1, 41, 208
Offset: 1

Views

Author

Vladimir Kruchinin, Dec 14 2011

Keywords

Comments

Convolution triangle of Narayana's cows sequence A000930. - Peter Luschny, Oct 09 2022

Examples

			Triangle T(n, m) starts:
[1]  1;
[2]  1,  1;
[3]  1,  2,  1;
[4]  2,  3,  3,   1;
[5]  3,  6,  6,   4,   1;
[6]  4, 11, 13,  10,   5,  1;
[7]  6, 18, 27,  24,  15,  6,  1;
[8]  9, 30, 51,  55,  40, 21,  7,  1;
[9] 13, 50, 94, 116, 100, 62, 28,  8,  1;
.
From _R. J. Mathar_, Mar 15 2013: (Start)
The matrix inverse starts
1;
-1,1;
1,-2,1;
-2,3,-3,1;
5,-6,6,-4,1;
-11,15,-13,10,-5,1;
24,-36,33,-24,15,-6,1;
-57,84,-84,63,-40,21,-7,1;
141,-204,208,-168,110,-62,28,-8,1.
(End)
		

Crossrefs

Cf. A000930.

Programs

  • Maple
    A202191 := proc(n,k)
        (x/(1-x-x^3))^k ;
        coeftayl(%,x=0,n) ;
    end proc: # R. J. Mathar, Mar 15 2013
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> simplify(hypergeom([(2 - n)/3, (3 - n)/3, (1 - n)/3], [(2 - n)/2, (1 - n)/2], -27/4))); # Peter Luschny, Oct 09 2022
  • Maxima
    T(n,m):=sum(binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1),k,0,n-m)/2;

Formula

T(n,m)=sum(k=0..n-m, binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1))/2.

A202710 Triangle read by rows. T(n, k) = coefficient of x^n in the Taylor expansion of [((1 - x - 2*x^2 - sqrt(1 - 2*x - 3*x^2))/(2*x^2))]^k.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1, 323, 707, 825, 604, 285, 84, 14, 1, 835, 1940, 2488, 2084, 1185, 454, 112, 16, 1, 2188, 5337, 7389, 6890, 4527, 2106, 679, 144, 18, 1, 5798, 14728, 21726, 22120, 16325, 8838, 3479, 968, 180, 20, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Dec 23 2011

Keywords

Comments

Triangle T(n,k)=
1. Riordan Array (1,((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) without first column.
2. Riordan Array (((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x)),((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) numbering triangle (0,0).
3. The leftmost column contains the Motzkin numbers A001006 without a(0).
The convolution triangle of the Motzkin numbers. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  1,
  2, 1,
  4, 4, 1,
  9, 12, 6, 1,
  21, 34, 24, 8, 1,
  51, 94, 83, 40, 10, 1,
  127, 258, 267, 164, 60, 12, 1
		

Crossrefs

Cf. A001006.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds a row and a column for n, k = 0.
    PMatrix(10, n -> simplify(hypergeom([(1-n)/2, -n/2], [2], 4))); # Peter Luschny, Oct 06 2022
  • Mathematica
    T[n_, k_] := Binomial[n - 1, n - k] + k*Sum[Binomial[n, i]*Binomial[k + i, n - k - i]/(k + i), {i, 0, n - k - 1}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2016, after Vladimir Kruchinin *)
  • Maxima
    T(n,k):=sum((i*(-1)^(k-i)*binomial(k,i)*sum(binomial(j+i,-n+2*j)*binomial(n+i,j+i) ,j,floor(n/2),n))/(n+i),i,1,k);
    
  • Maxima
    T(n,k):=+binomial(n-1,n-k)+k*sum((binomial(n,i)*binomial(k+i,n-k-i))/(k+i),i,0,n-k-1); /* Vladimir Kruchinin, Dec 06 2016*/

Formula

T(n,k) = Sum_{i=1..k} (i*(-1)^(k-i)*binomial(k,i)*Sum_{j=floor(n/2)..n} binomial(j+i,-n+2*j)*binomial(n+i,j+i))/(n+i).
T(n,k) = k*Sum_{i=0..n-k} binomial(k+i,n-k-i)*binomial(n,i)/(k+i). - Vladimir Kruchinin, Dec 09 2016

A206294 Riordan array (1, x/(1-x)^3).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2012

Keywords

Comments

The convolution triangle of the triangular numbers A000217. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
		

Crossrefs

Cf. Columns: A000007, A000217 (triangular numbers), A000389, A000581, A001288, A010967..(+3)..A011000, A017714..(+3)..A017762.
Row sums are A052529.
Cf. A127893.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
  • Mathematica
    Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    {T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
    
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
T(n,n) = 1, T(k+1,k) = 3*k = A008585(k), T(k+2,k) = A081266(k).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A052529(n), A052910(n) for x = 0, 1, 2 respectively.
G.f.: (1-x)^3/((1-x)^3-y*x).
Previous Showing 51-60 of 65 results. Next