A075435 T(n,k) = right- or upward-moving paths connecting opposite corners of an n X n chessboard, visiting the diagonal at k points between start and finish.
2, 6, 4, 20, 24, 8, 70, 116, 72, 16, 252, 520, 456, 192, 32, 924, 2248, 2496, 1504, 480, 64, 3432, 9520, 12624, 9728, 4480, 1152, 128, 12870, 39796, 60792, 56400, 33440, 12480, 2688, 256, 48620, 164904, 283208, 304704, 218720, 105600, 33152, 6144
Offset: 2
Examples
{2}, {6, 4}, {20, 24, 8}, {70, 116, 72, 16}, {252, 520, 456, 192, 32}, ...
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, n -> binomial(2*n, n)); # Peter Luschny, Oct 19 2022
-
Mathematica
Table[Table[Plus@@Apply[Times, Compositions[n-1-k, k]+1 /. i_Integer->Binomial[2i, i], {1}], {k, 1, n-1}], {n, 2, 12}]
-
Maxima
T(n,m):=sum(k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1),k,m,n); /* Vladimir Kruchinin, Mar 30 2011 */
-
Sage
@cached_function def T(k,n): if k==n: return 2^n if k==0: return 0 return sum(binomial(2*i,i)*T(k-1,n-i) for i in (1..n-k+1)) A075435 = lambda n,k: T(k,n) for n in (1..9): print([A075435(n,k) for k in (1..n)]) # Peter Luschny, Mar 12 2016
Formula
G.f.: [2*x*c(x)/(1-x*c(x))]^m=sum(n>=m T(n,m)*x^n) where c(x) is the g.f. of A000108, also T(n,m)=sum(k=m..n, k/n*binomial(2*n-k-1,n-1)*2^k*binomial(k-1,m-1)), n>=m>0. [Vladimir Kruchinin, Mar 30 2011]
Comments