cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A361801 Number of nonempty subsets of {1..n} with median n/2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 14, 14, 49, 49, 175, 175, 637, 637, 2353, 2353, 8788, 8788, 33098, 33098, 125476, 125476, 478192, 478192, 1830270, 1830270, 7030570, 7030570, 27088870, 27088870, 104647630, 104647630, 405187825, 405187825, 1571990935, 1571990935
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5).
The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6).
The a(0) = 0 through a(7) = 14 subsets:
  .  .  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
                    {1,3}    {2,3}      {1,5}        {2,5}
                    {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                    {1,2,4}  {1,2,3,5}  {1,3,4}      {1,2,5,6}
                                        {1,3,5}      {1,2,5,7}
                                        {1,3,6}      {1,3,4,5}
                                        {2,3,4}      {1,3,4,6}
                                        {2,3,5}      {1,3,4,7}
                                        {2,3,6}      {2,3,4,5}
                                        {1,2,4,5}    {2,3,4,6}
                                        {1,2,4,6}    {2,3,4,7}
                                        {1,2,3,4,5}  {1,2,3,4,5,6}
                                        {1,2,3,4,6}  {1,2,3,4,5,7}
                                        {1,2,3,5,6}  {1,2,3,4,6,7}
		

Crossrefs

A bisection is A079309.
The case with n's has bisection A057552.
The case without n's is A100066, bisection A006134.
A central diagonal of A231147.
A version for partitions is A361849.
For mean instead of median we have A362046.
A000975 counts subsets with integer median, for mean A327475.
A007318 counts subsets by length.
A013580 appears to count subsets by median, by mean A327481.
A360005(n)/2 represents the median statistic for partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]

Formula

a(n) = A079309(floor(n/2)). - Alois P. Heinz, Apr 11 2023

A362046 Number of nonempty subsets of {1..n} with mean n/2.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 9, 8, 25, 23, 75, 68, 235, 213, 759, 695, 2521, 2325, 8555, 7941, 29503, 27561, 103129, 96861, 364547, 344003, 1300819, 1232566, 4679471, 4449849, 16952161, 16171117, 61790441, 59107889, 226451035, 217157068, 833918839, 801467551, 3084255127
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2023

Keywords

Examples

			The a(2) = 1 through a(7) = 8 subsets:
  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
              {1,3}    {2,3}      {1,5}        {2,5}
              {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                                  {1,2,6}      {1,2,4,7}
                                  {1,3,5}      {1,2,5,6}
                                  {2,3,4}      {1,3,4,6}
                                  {1,2,3,6}    {2,3,4,5}
                                  {1,2,4,5}    {1,2,3,4,5,6}
                                  {1,2,3,4,5}
		

Crossrefs

Using range 0..n gives A070925.
Including the empty set gives A133406.
Even bisection is A212352.
For median instead of mean we have A361801, the doubling of A079309.
A version for partitions is A361853, for median A361849.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A007318 counts subsets by length.
A067538 counts partitions with integer mean, strict A102627.
A231147 appears to count subsets by median, full-steps A013580.
A327475 counts subsets with integer mean, A000975 integer median.
A327481 counts subsets by integer mean.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Mean[#]==n/2&]],{n,0,15}]

Formula

a(n) = (A070925(n) - 1)/2.
a(n) = A133406(n) - 1.
a(2n) = A212352(n) = A000980(n)/2 - 1.

A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 9, 4, 1, 50, 29, 14, 5, 1, 176, 99, 49, 20, 6, 1, 638, 351, 175, 76, 27, 7, 1, 2354, 1275, 637, 286, 111, 35, 8, 1, 8789, 4707, 2353, 1078, 441, 155, 44, 9, 1, 33099, 17577, 8788, 4081, 1728, 650, 209, 54, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
     1
     2     1
     5     3     1
    15     9     4     1
    50    29    14     5     1
   176    99    49    20     6     1
   638   351   175    76    27     7     1
  2354  1275   637   286   111    35     8     1
  8789  4707  2353  1078   441   155    44     9     1
Row n = 4 counts the following subsets:
  {1,7}            {2,6}        {3,5}    {4}
  {1,4,5}          {2,4,5}      {3,4,5}
  {1,4,6}          {2,4,6}      {3,4,6}
  {1,4,7}          {2,4,7}      {3,4,7}
  {1,2,6,7}        {2,3,5,6}
  {1,3,5,6}        {2,3,5,7}
  {1,3,5,7}        {2,3,4,5,6}
  {1,2,4,5,6}      {2,3,4,5,7}
  {1,2,4,5,7}      {2,3,4,6,7}
  {1,2,4,6,7}
  {1,3,4,5,6}
  {1,3,4,5,7}
  {1,3,4,6,7}
  {1,2,3,5,6,7}
  {1,2,3,4,5,6,7}
		

Crossrefs

Row sums appear to be A006134.
Column k = 1 appears to be A024718.
Column k = 2 appears to be A006134.
Column k = 3 appears to be A079309.
A000975 counts subsets with integer median, mean A327475.
A007318 counts subsets by length.
A231147 counts subsets by median, full steps A013580, by mean A327481.
A359893 and A359901 count partitions by median.
A360005(n)/2 gives the median statistic.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2n-1]],Min@@#==k&&Median[#]==n&]],{n,6},{k,n}]
  • PARI
    T(n,k) = sum(j=0, n-k, binomial(2*j+k-2, j)) \\ Andrew Howroyd, Apr 09 2023

Formula

T(n,k) = 1 + Sum_{j=1..n-k} binomial(2*j+k-2, j). - Andrew Howroyd, Apr 09 2023

A361852 Number of integer partitions of n such that (length) * (maximum) < 2n.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) < 2*(mean).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (2211)    (421)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (22111)
                                               (211111)
                                               (1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
		

Crossrefs

For length instead of mean we have A237754.
Allowing equality gives A237755, for median A361848.
For equal median we have A361849, ranks A361856.
The equal version is A361853, ranks A361855.
For median instead of mean we have A361858.
The complement is counted by A361906.
Reversing the inequality gives A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<2n&]],{n,30}]

A361857 Number of integer partitions of n such that the maximum is greater than twice the median.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 7, 11, 16, 25, 37, 52, 74, 101, 138, 185, 248, 325, 428, 554, 713, 914, 1167, 1476, 1865, 2336, 2922, 3633, 4508, 5562, 6854, 8405, 10284, 12536, 15253, 18489, 22376, 26994, 32507, 39038, 46802, 55963, 66817, 79582, 94643, 112315
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (411)   (511)    (521)     (522)      (622)
         (3111)  (4111)   (611)     (621)      (721)
                 (31111)  (4211)    (711)      (811)
                          (5111)    (5211)     (5221)
                          (32111)   (6111)     (5311)
                          (41111)   (33111)    (6211)
                          (311111)  (42111)    (7111)
                                    (51111)    (43111)
                                    (321111)   (52111)
                                    (411111)   (61111)
                                    (3111111)  (331111)
                                               (421111)
                                               (511111)
                                               (3211111)
                                               (4111111)
                                               (31111111)
The partition y = (5,2,2,1) has maximum 5 and median 2, and 5 > 2*2, so y is counted under a(10).
		

Crossrefs

For length instead of median we have A237751.
For minimum instead of median we have A237820.
The complement is counted by A361848.
The equal version is A361849, ranks A361856.
Reversing the inequality gives A361858.
Allowing equality gives A361859, ranks A361868.
These partitions have ranks A361867.
For mean instead of median we have A361907.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#>2*Median[#]&]],{n,30}]

A361867 Positive integers > 1 whose prime indices satisfy (maximum) > 2*(median).

Original entry on oeis.org

20, 28, 40, 44, 52, 56, 66, 68, 76, 78, 80, 84, 88, 92, 99, 102, 104, 112, 114, 116, 117, 120, 124, 132, 136, 138, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 190, 198, 200, 204, 207, 208, 212, 220, 222, 224, 228, 230, 232, 234
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 > 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
   20: {1,1,3}
   28: {1,1,4}
   40: {1,1,1,3}
   44: {1,1,5}
   52: {1,1,6}
   56: {1,1,1,4}
   66: {1,2,5}
   68: {1,1,7}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   88: {1,1,1,5}
   92: {1,1,9}
   99: {2,2,5}
		

Crossrefs

The LHS is A061395 (greatest prime index).
The RHS is A360005 (twice median), distinct A360457.
The equal version is A361856, counted by A361849.
These partitions are counted by A361857, reverse A361858.
Including the equal case gives A361868, counted by A361859.
For mean instead of median we have A361907.
A000975 counts subsets with integer median.
A001222 counts prime factors, distinct A001221.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], Max@@prix[#]>2*Median[prix[#]]&]

A361868 Positive integers > 1 whose prime indices satisfy (maximum) >= 2*(median).

Original entry on oeis.org

12, 20, 24, 28, 40, 42, 44, 48, 52, 56, 60, 63, 66, 68, 72, 76, 78, 80, 84, 88, 92, 96, 99, 102, 104, 112, 114, 116, 117, 120, 124, 126, 130, 132, 136, 138, 140, 144, 148, 152, 153, 156, 160, 164, 168, 170, 171, 172, 174, 176, 184, 186, 188, 189, 190, 192, 195
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 84 are {1,1,2,4}, with maximum 4 and median 3/2, and 4 >= 2*(3/2), so 84 is in the sequence.
The terms together with their prime indices begin:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

The LHS is A061395 (greatest prime index).
The RHS is A360005 (twice median), distinct A360457.
The equal case is A361856, counted by A361849.
These partitions are counted by A361859.
The unequal case is A361867, counted by A361857.
The complement is counted by A361858.
A000975 counts subsets with integer median.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]>=2*Median[prix[#]]&]

A361909 Positive integers > 1 whose prime indices satisfy: (maximum) = 2*(length).

Original entry on oeis.org

3, 14, 21, 35, 49, 52, 78, 117, 130, 152, 182, 195, 228, 273, 286, 325, 338, 342, 380, 429, 455, 464, 507, 513, 532, 570, 637, 696, 715, 798, 836, 845, 855, 950, 988, 1001, 1044, 1160, 1183, 1184, 1197, 1254, 1292, 1330, 1425, 1444, 1482, 1566, 1573, 1624
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}
    14: {1,4}
    21: {2,4}
    35: {3,4}
    49: {4,4}
    52: {1,1,6}
    78: {1,2,6}
   117: {2,2,6}
   130: {1,3,6}
   152: {1,1,1,8}
   182: {1,4,6}
   195: {2,3,6}
   228: {1,1,2,8}
   273: {2,4,6}
   286: {1,5,6}
   325: {3,3,6}
   338: {1,6,6}
   342: {1,2,2,8}
		

Crossrefs

The LHS is A061395 (greatest prime index), least A055396.
Without multiplying by 2 in the RHS, we have A106529.
For omega instead of bigomega we have A111907, counted by A239959.
Partitions of this type are counted by A237753.
The RHS is A255201 (twice bigomega).
For mean instead of length we have A361855, counted by A361853.
For median instead of length we have A361856, counted by A361849.
For minimum instead of length we have A361908, counted by A118096.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
A112798 lists prime indices, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]==2*PrimeOmega[#]&]

A362050 Numbers whose prime indices satisfy: (length) = 2*(median).

Original entry on oeis.org

4, 54, 81, 90, 100, 126, 135, 140, 189, 198, 220, 234, 260, 297, 306, 340, 342, 351, 380, 414, 459, 460, 513, 522, 558, 580, 620, 621, 666, 738, 740, 774, 783, 820, 837, 846, 860, 940, 954, 999, 1060, 1062, 1098, 1107, 1161, 1180, 1206, 1220, 1269, 1278, 1314
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
All terms are squarefree.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
   54: {1,2,2,2}
   81: {2,2,2,2}
   90: {1,2,2,3}
  100: {1,1,3,3}
  126: {1,2,2,4}
  135: {2,2,2,3}
  140: {1,1,3,4}
  189: {2,2,2,4}
  198: {1,2,2,5}
		

Crossrefs

The LHS is A001222 (bigomega).
The RHS is A360005 (twice median).
Before multiplying the median by 2, A361800 counts partitions of this type.
For maximum instead of length we have A361856, counted by A361849.
Partitions of this type are counted by A362049.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, sum A056239.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2*Median[prix[#]]&]

A361854 Number of strict integer partitions of n such that (length) * (maximum) = 2n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also strict partitions satisfying (maximum) = 2*(mean).
These are strict partitions where both the diagram and its complement (see example) have size n.

Examples

			The a(n) strict partitions for selected n (A..E = 10..14):
  n=9:  n=12:  n=14:  n=15:  n=16:  n=18:  n=20:  n=21:  n=22:
--------------------------------------------------------------
  621   831    7421   A32    8431   C42    A532   E43    B542
        6321          A41    8521   C51    A541   E52    B632
                                    9432   A631   E61    B641
                                    9531   A721          B731
                                    9621   85421         B821
                                           86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
  o o o o o o o o
  o o o o o . . .
  o o o o . . . .
  o o . . . . . .
  o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
		

Crossrefs

For minimum instead of mean we have A241035, non-strict A118096.
For length instead of mean we have A241087, non-strict A237753.
For median instead of mean we have A361850, non-strict A361849.
The non-strict version is A361853.
These partitions have ranks A361855 /\ A005117.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict A067538.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[#]*Max@@#==2n&]],{n,30}]
Previous Showing 11-20 of 24 results. Next