cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A363487 High mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 2, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 3, 7, 1, 16, 2, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 3, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is its greatest mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360015, counted by A241131.
For low instead of high mode we have A363486.
The version for low median is A363941, triangle A124943.
The version for high median is A363942, triangle A124944.
The version for mean instead of mode is A363944, low A363943.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,Last[modes[prix[n]]]],{n,30}]

A362616 Numbers in whose prime factorization the greatest factor is the unique mode.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 150, 151, 157, 162, 163, 167
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

First differs from A329131 in lacking 450 and having 1500.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The factorization of 90 is 2*3*3*5, modes {3}, so 90 is missing.
The factorization of 450 is 2*3*3*5*5, modes {3,5}, so 450 is missing.
The factorization of 900 is 2*2*3*3*5*5, modes {2,3,5}, so 900 is missing.
The factorization of 1500 is 2*2*3*5*5*5, modes {5}, so 1500 is present.
The terms together with their prime indices begin:
     2: {1}          27: {2,2,2}           67: {19}
     3: {2}          29: {10}              71: {20}
     4: {1,1}        31: {11}              73: {21}
     5: {3}          32: {1,1,1,1,1}       75: {2,3,3}
     7: {4}          37: {12}              79: {22}
     8: {1,1,1}      41: {13}              81: {2,2,2,2}
     9: {2,2}        43: {14}              83: {23}
    11: {5}          47: {15}              89: {24}
    13: {6}          49: {4,4}             97: {25}
    16: {1,1,1,1}    50: {1,3,3}           98: {1,4,4}
    17: {7}          53: {16}             101: {26}
    18: {1,2,2}      54: {1,2,2,2}        103: {27}
    19: {8}          59: {17}             107: {28}
    23: {9}          61: {18}             108: {1,1,2,2,2}
    25: {3,3}        64: {1,1,1,1,1,1}    109: {29}
		

Crossrefs

First term with given bigomega is A000079.
For median instead of mode we have A053263.
Partitions of this type are counted by A362612.
A112798 lists prime indices, length A001222, sum A056239.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362614 counts partitions by number of modes, ranked by A362611.
A362615 counts partitions by number of co-modes, ranked by A362613.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[100],Commonest[prifacs[#]]=={Max[prifacs[#]]}&]

A237821 Number of partitions of n such that 2*(least part) <= greatest part.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n with different median from maximum, ranks A362980. - Gus Wiseman, May 15 2023

Examples

			a(6) = 7 counts these partitions:  51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
  (21)  (31)   (41)    (42)     (52)
        (211)  (221)   (51)     (61)
               (311)   (321)    (331)
               (2111)  (411)    (421)
                       (2211)   (511)
                       (3111)   (2221)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
  (21)  (31)   (32)    (42)     (43)
        (211)  (41)    (51)     (52)
               (311)   (321)    (61)
               (2111)  (411)    (322)
                       (2211)   (421)
                       (3111)   (511)
                       (21111)  (3211)
                                (4111)
                                (22111)
                                (31111)
                                (211111)
(End)
		

Crossrefs

The complement is counted by A053263, ranks A081306.
These partitions have ranks A069900.
The case of equality is A118096.
For < instead of <= we have A237820, ranks A362982.
For >= instead of <= we have A237824, ranks A362981.
The conjugate partitions have ranks A362980.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(3*i+j) /Product_{k=i..2*i+j} (1-x^k). - Seiichi Manyama, May 27 2023

A363946 Triangle read by rows where T(n,k) is the number of integer partitions of n with high mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 3, 2, 0, 1, 0, 1, 6, 3, 0, 0, 1, 0, 1, 6, 4, 3, 0, 0, 1, 0, 1, 11, 5, 4, 0, 0, 0, 1, 0, 1, 11, 13, 0, 4, 0, 0, 0, 1, 0, 1, 18, 9, 8, 5, 0, 0, 0, 0, 1, 0, 1, 18, 21, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

Extending the terminology of A124944, the "high mean" of a multiset is obtained by taking the mean and rounding up.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  3  2  0  1
  0  1  6  3  0  0  1
  0  1  6  4  3  0  0  1
  0  1 11  5  4  0  0  0  1
  0  1 11 13  0  4  0  0  0  1
  0  1 18  9  8  5  0  0  0  0  1
  0  1 18 21 10  0  5  0  0  0  0  1
  0  1 29 28 12  0  6  0  0  0  0  0  1
  0  1 29 32 18 14  0  6  0  0  0  0  0  1
  0  1 44 43 23 16  0  7  0  0  0  0  0  0  1
  0  1 44 77 27 19  0  0  7  0  0  0  0  0  0  1
Row n = 7 counts the following partitions:
  .  (1111111)  (4111)    (511)  (61)  .  .  (7)
                (3211)    (421)  (52)
                (31111)   (331)  (43)
                (2221)    (322)
                (22111)
                (211111)
		

Crossrefs

Row sums are A000041.
Column k = 2 is A026905 redoubled, ranks A363950.
For median instead of mean we have triangle A124944, low A124943.
For mode instead of mean we have rank stat A363486, high A363487.
For median instead of mean we have rank statistic A363942, low A363941.
The rank statistic for this triangle is A363944.
The version for low mean is A363945, rank statistic A363943.
For mode instead of mean we have triangle A363953, low A363952.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[Length[Select[IntegerPartitions[n],meanup[#]==k&]],{n,0,15},{k,0,n}]

A171979 Number of partitions of n such that smaller parts do not occur more frequently than greater parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 19, 21, 30, 31, 42, 50, 62, 69, 91, 99, 126, 144, 175, 198, 246, 275, 331, 379, 452, 509, 612, 686, 811, 922, 1076, 1219, 1428, 1604, 1863, 2108, 2434, 2739, 3162, 3551, 4075, 4593, 5240, 5885, 6721, 7527, 8556, 9597, 10870
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

A000009(n) <= a(n) <= A000041(n).
Equivalently, the number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the maximal part), as in the Mathematica program. - Clark Kimberling, Apr 04 2014
Also the number of integer partitions of n whose greatest part is a mode, meaning it appears at least as many times as each of the others. The name "Number of partitions of n such that smaller parts do not occur more frequently than greater parts" seems to describe A100882 = "Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing," which first differs from this at n = 10 due to the partition (3,3,2,1,1). - Gus Wiseman, May 07 2023

Examples

			a(5) = #{5, 4+1, 3+2, 2+2+1, 5x1} = 5;
a(6) = #{6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 6x1} = 8;
a(7) = #{7, 6+1, 5+2, 4+3, 4+2+1, 3+3+1, 2+2+2+1, 7x1} = 8;
a(8) = #{8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1, 3+3+2, 3+3+1+1, 2+2+2+2, 2+2+2+1+1, 8x1} = 12.
		

Crossrefs

For median instead of mode we have A053263.
The complement is counted by A240302.
The case where the maximum is the only mode is A362612.
A000041 counts integer partitions, strict A000009.
A362608 counts partitions with a unique mode, complement A362607.
A362611 counts modes in prime factorization.
A362614 counts partitions by number of modes.

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]]  (* maximal multiplicity *)
    Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* this sequence *)
    Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240302 *)
    (* Clark Kimberling, Apr 04 2014 *)
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0],
         If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1,
         If[k == -1, j, If[k == 0, 0, If[j > k, 0, k]]]], {j, 1, n/i}]]];
    a[n_] := PartitionsP[n] - b[n, n, -1];
    a /@ Range[0, 70] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz in A240302 *)
    Table[Length[Select[IntegerPartitions[n],MemberQ[Commonest[#],Max[#]]&]],{n,0,30}] (* Gus Wiseman, May 07 2023 *)
  • PARI
    { my(N=53, x='x+O('x^N));
    my(gf=1+sum(i=1,N,sum(j=1,floor(N/i),x^(i*j)*prod(k=1,i-1,(1-x^(k*(j+1)))/(1-x^k)))));
    Vec(gf) } \\ John Tyler Rascoe, Mar 09 2024

Formula

a(n) = p(n,0,1,1) with p(n,i,j,k) = if k<=n then p(n-k,i,j+1,k) +p(n,max(i,j),1,k+1) else (if j0 then 0 else 1).
a(n) + A240302(n) = A000041(n). - Clark Kimberling, Apr 04 2014.
G.f.: 1 + Sum_{i, j>0} x^(i*j) * Product_{k=1..i-1} ((1 - x^(k*(j+1)))/(1 - x^k)). - John Tyler Rascoe, Mar 09 2024

A363945 Triangle read by rows where T(n,k) is the number of integer partitions of n with low mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 4, 2, 0, 0, 1, 0, 4, 3, 3, 0, 0, 1, 0, 7, 4, 3, 0, 0, 0, 1, 0, 7, 10, 0, 4, 0, 0, 0, 1, 0, 12, 6, 7, 4, 0, 0, 0, 0, 1, 0, 12, 16, 8, 0, 5, 0, 0, 0, 0, 1, 0, 19, 21, 10, 0, 5, 0, 0, 0, 0
Offset: 0

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

Extending the terminology of A124943, the "low mean" of a multiset is its mean rounded down.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  2  2  0  1
  0  4  2  0  0  1
  0  4  3  3  0  0  1
  0  7  4  3  0  0  0  1
  0  7 10  0  4  0  0  0  1
  0 12  6  7  4  0  0  0  0  1
  0 12 16  8  0  5  0  0  0  0  1
  0 19 21 10  0  5  0  0  0  0  0  1
  0 19 24 15 12  0  6  0  0  0  0  0  1
  0 30 32 18 14  0  6  0  0  0  0  0  0  1
  0 30 58 23 16  0  0  7  0  0  0  0  0  0  1
  0 45 47 57  0 19  0  7  0  0  0  0  0  0  0  1
Row k = 8 counts the following partitions:
  .  (41111)     (611)   .  (71)  .  .  .  (8)
     (32111)     (521)      (62)
     (311111)    (5111)     (53)
     (22211)     (431)      (44)
     (221111)    (422)
     (2111111)   (4211)
     (11111111)  (332)
                 (3311)
                 (3221)
                 (2222)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A025065, ranks A363949.
For median instead of mean we have triangle A124943, high A124944.
Column k = 2 is A363745.
For median instead of mean we have rank statistic A363941, high A363942.
The rank statistic for this triangle is A363943.
The high version is A363946, rank statistic A363944.
For mode instead of mean we have A363952, rank statistic A363486.
For high mode instead of mean we have A363953, rank statistic A363487.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    meandown[y_]:=If[Length[y]==0,0,Floor[Mean[y]]];
    Table[Length[Select[IntegerPartitions[n],meandown[#]==k&]],{n,0,15},{k,0,n}]

A363952 Number of integer partitions of n with low mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 4, 2, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 9, 3, 2, 0, 0, 0, 1, 0, 13, 5, 2, 1, 0, 0, 0, 1, 0, 18, 6, 3, 2, 0, 0, 0, 0, 1, 0, 26, 9, 3, 2, 1, 0, 0, 0, 0, 1, 0, 32, 13, 5, 3, 2, 0, 0, 0, 0, 0, 1, 0, 47, 16, 7, 3, 2, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" of a multiset is the least mode.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   1
   0   3   1   0   1
   0   4   2   0   0   1
   0   7   2   1   0   0   1
   0   9   3   2   0   0   0   1
   0  13   5   2   1   0   0   0   1
   0  18   6   3   2   0   0   0   0   1
   0  26   9   3   2   1   0   0   0   0   1
   0  32  13   5   3   2   0   0   0   0   0   1
   0  47  16   7   3   2   1   0   0   0   0   0   1
   0  60  21  10   4   3   2   0   0   0   0   0   0   1
   0  79  30  13   6   3   2   1   0   0   0   0   0   0   1
   0 104  38  17   7   4   3   2   0   0   0   0   0   0   0   1
Row n = 8 counts the following partitions:
  .  (71)        (62)     (53)   (44)  .  .  .  (8)
     (611)       (422)    (332)
     (521)       (3221)
     (5111)      (2222)
     (431)       (22211)
     (4211)
     (41111)
     (3311)
     (32111)
     (311111)
     (221111)
     (2111111)
     (11111111)
		

Crossrefs

Row sums are A000041.
For median: A124943 (high A124944), rank statistic A363941 (high A363942).
Column k = 1 is A241131 (partitions w/ low mode 1), ranks A360015, A360013.
The rank statistic for this triangle is A363486.
For mean: A363945 (high A363946), rank statistic A363943 (high A363944).
The high version is A363953.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A362619 One and all numbers whose greatest prime factor is a mode, meaning it appears at least as many times as each of the others.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1

Author

Gus Wiseman, May 09 2023

Keywords

Comments

First differs from A304678 in having 300.

Examples

			The prime factorization of 300 is 2*2*3*5*5, with modes {2,5} and maximum 5, so 300 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A171979.
The case of a unique mode is A362616, counted by A362612.
The complement is A362620, counted by A240302.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362605 ranks partitions with a more than one mode, counted by A362607.
A362606 ranks partitions with a more than one co-mode, counted by A362609.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
A362621 ranks partitions with median equal to maximum, counted by A053263.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[100],MemberQ[Commonest[prifacs[#]],Max[prifacs[#]]]&]

A363953 Number of integer partitions of n with high mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 7, 2, 1, 2, 1, 1, 1, 0, 9, 4, 2, 2, 2, 1, 1, 1, 0, 13, 6, 2, 2, 2, 2, 1, 1, 1, 0, 18, 7, 4, 3, 3, 2, 2, 1, 1, 1, 0, 26, 10, 5, 2, 3, 3, 2, 2, 1, 1, 1
Offset: 0

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is the greatest mode.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  3  1  1  1  1
  0  4  2  2  1  1  1
  0  7  2  1  2  1  1  1
  0  9  4  2  2  2  1  1  1
  0 13  6  2  2  2  2  1  1  1
  0 18  7  4  3  3  2  2  1  1  1
  0 26 10  5  2  3  3  2  2  1  1  1
  0 32 15  8  4  4  4  3  2  2  1  1  1
  0 47 19  9  5  3  4  4  3  2  2  1  1  1
  0 60 26 13  7  5  5  5  4  3  2  2  1  1  1
  0 79 34 18 10  6  5  5  5  4  3  2  2  1  1  1
Row n = 9 counts the following partitions:
  .  (711)        (522)     (333)   (441)  (54)   (63)   (72)  (81)  (9)
     (6111)       (4221)    (3321)  (432)  (531)  (621)
     (5211)       (3222)
     (51111)      (32211)
     (4311)       (22221)
     (42111)      (222111)
     (411111)
     (33111)
     (321111)
     (3111111)
     (2211111)
     (21111111)
     (111111111)
		

Crossrefs

Row sums are A000041.
For median: A124944 (low A124943), rank statistic A363942 (low A363941).
Column k = 1 is A241131 (partitions w/ high mode 1), ranks A360013, A360015.
The rank statistic for this triangle is A363487, low A363486.
For mean: A363946 (low A363945), rank statistic A363944 (low A363943).
The low version is A363952.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,Last[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 8, 1, 10, 9, 3, 11, 13, 6, 15, 18, 9, 13, 24, 18, 1, 25, 24, 25, 3, 19, 36, 40, 6, 29, 41, 52, 13, 33, 45, 79, 19, 42, 57, 95, 36, 1, 39, 68, 133, 54, 3, 62, 72, 158, 87, 6, 55, 87, 214, 121, 13, 81, 95, 250, 177, 24
Offset: 0

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			Triangle begins:
   1
   1
   2
   3
   4   1
   4   3
   8   3
   6   8   1
  10   9   3
  11  13   6
  15  18   9
  13  24  18   1
  25  24  25   3
  19  36  40   6
  29  41  52  13
  33  45  79  19
  42  57  95  36   1
  39  68 133  54   3
Row n = 9 counts the following partitions:
  (9)          (441)       (3321)
  (54)         (522)       (4221)
  (63)         (711)       (4311)
  (72)         (3222)      (5211)
  (81)         (6111)      (42111)
  (333)        (22221)     (321111)
  (432)        (32211)
  (531)        (33111)
  (621)        (51111)
  (222111)     (411111)
  (111111111)  (2211111)
               (3111111)
               (21111111)
		

Crossrefs

Row sums are A000041.
Row lengths are approximately A000196.
Column k = 0 is A047966.
For modes we have A362614, rank statistic A362611.
For co-modes we have A362615, rank statistic A362613.
Columns k > 1 sum to A363124.
Column k = 1 is A363125.
This rank statistic (number of non-modes) is A363127.
For non-co-modes we have A363130, rank statistic A363131.
A008284/A058398 count partitions by length/mean.
A275870 counts collapsible partitions.
A353836 counts partitions by number of distinct run-sums.
A359893 counts partitions by median.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				
Previous Showing 11-20 of 34 results. Next