cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 78 results. Next

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A364349 Number of strict integer partitions of n containing the sum of no subset of the parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

First differs from A275972 in counting (7,5,3,1), which is not knapsack.

Examples

			The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16).
The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)    (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)  (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)  (5,2)    (6,2)    (6,3)
                                        (6,1)    (7,1)    (7,2)
                                        (4,2,1)  (5,2,1)  (8,1)
                                                          (4,3,2)
                                                          (5,3,1)
                                                          (6,2,1)
		

Crossrefs

For subsets of {1..n} we have A151897, complement A364534.
The non-strict version is A237667, ranked by A364531.
The complement in strict partitions is counted by A364272.
The linear combination-free version is A364350.
The binary version is A364533, allowing re-used parts A364346.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions (not re-using parts), complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A088314 Cardinality of set of sets of parts of all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 51, 61, 79, 96, 124, 148, 186, 222, 275, 326, 400, 473, 575, 673, 811, 946, 1132, 1317, 1558, 1813, 2138, 2463, 2893, 3323, 3882, 4461, 5177, 5917, 6847, 7818, 8994, 10251, 11766, 13334, 15281, 17309, 19732, 22307
Offset: 0

Views

Author

Naohiro Nomoto, Nov 05 2003

Keywords

Comments

Number of different values of A007947(m) when A056239(m) is equal to n.
From Gus Wiseman, Sep 11 2023: (Start)
Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
{1} {1} {1} {1} {1} {1} {1}
{2} {3} {2} {5} {2} {7}
{1,2} {4} {1,2} {3} {1,2}
{1,2} {1,3} {6} {1,3}
{1,3} {1,4} {1,2} {1,4}
{2,3} {1,3} {1,5}
{1,4} {1,6}
{1,5} {2,3}
{2,4} {2,5}
{1,2,3} {3,4}
{1,2,3}
{1,2,4}
(End)

Examples

			The 7 partitions of 5 and their sets of parts are
[ #]  partition      set of parts
[ 1]  [ 1 1 1 1 1 ]  {1}
[ 2]  [ 2 1 1 1 ]    {1, 2}
[ 3]  [ 2 2 1 ]      {1, 2}  (same as before)
[ 4]  [ 3 1 1 ]      {1, 3}
[ 5]  [ 3 2 ]        {2, 3}
[ 6]  [ 4 1 ]        {1, 4}
[ 7]  [ 5 ]          {5}
so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
		

Crossrefs

Cf. A182410.
The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
The case of pairs is A365315, see also A365314, A365320, A365321.
A116861 and A364916 count linear combinations of strict partitions.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364914 and A365046 count combination-full subsets.

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    list2set := L -> {op(L)};
    a:= N -> list2set(map( list2set, combinat[partition](N) ));
    seq(nops(a(n)), n=0..30);
    #  Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..40);
    # Alois P. Heinz, Aug 09 2012
  • Mathematica
    Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* Geoffrey Critzer, Feb 19 2013 *)
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
         Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
         Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
    a[n_] := Length[b[n, n]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* Gus Wiseman, Sep 11 2023 *)
  • Python
    from sympy.utilities.iterables import partitions
    def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023

Formula

a(n) = 2^(n-1) - A070880(n). - Alois P. Heinz, Feb 08 2019
a(n) = A365042(n) + 1. - Gus Wiseman, Sep 13 2023

Extensions

More terms and clearer definition from Vladeta Jovovic, Apr 21 2005

A365046 Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Includes all subsets containing both 1 and n.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,3,5}
                        {1,3,4}    {1,4,5}
                        {2,3,4}    {2,3,5}
                        {1,2,3,4}  {2,4,5}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A364914.
The positive version is A365042, first differences of A365043.
The positive complement is counted by A365045, first differences of A365044.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A364350 counts combination-free strict partitions, complement A364839.
A085489 and A364755 count subsets without the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n+1) = 2^n - A124506(n).

A365381 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} with a subset summing to k.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 1, 8, 4, 4, 5, 2, 2, 1, 16, 8, 8, 10, 10, 7, 5, 5, 2, 2, 1, 32, 16, 16, 20, 20, 23, 15, 15, 12, 12, 8, 5, 5, 2, 2, 1, 64, 32, 32, 40, 40, 46, 47, 38, 33, 35, 29, 28, 21, 17, 14, 13, 8, 5, 5, 2, 2, 1, 128, 64, 64, 80, 80, 92, 94, 102, 79, 82, 76, 75, 68, 64, 53, 48, 43, 34, 33, 23, 19, 15, 13, 8, 5, 5, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Comments

Row lengths are A000124(n) = 1 + n*(n+1)/2.

Examples

			Triangle begins:
   1
   2  1
   4  2  2  1
   8  4  4  5  2  2  1
  16  8  8 10 10  7  5  5  2  2  1
  32 16 16 20 20 23 15 15 12 12  8  5  5  2  2  1
  64 32 32 40 40 46 47 38 33 35 29 28 21 17 14 13  8  5  5  2  2  1
Array begins:
     k=0   k=1  k=2  k=3  k=4  k=5  k=6  k=7  k=8  k=9
-------------------------------------------------------
n=0:  1
n=1:  2     1
n=2:  4     2    2    1
n=3:  8     4    4    5    2    2    1
n=4:  16    8    8    10   10   7    5    5    2    2
n=5:  32    16   16   20   20   23   15   15   12   12
n=6:  64    32   32   40   40   46   47   38   33   35
n=7:  128   64   64   80   80   92   94   102  79   82
n=8:  256   128  128  160  160  184  188  204  207  184
n=9:  512   256  256  320  320  368  376  408  414  440
The T(5,8) = 12 subsets are:
  {3,5}  {1,2,5}  {1,2,3,4}  {1,2,3,4,5}
         {1,3,4}  {1,2,3,5}
         {1,3,5}  {1,2,4,5}
         {2,3,5}  {1,3,4,5}
         {3,4,5}  {2,3,4,5}
		

Crossrefs

Row lengths are A000124 = number of distinct sums of subsets of {1..n}.
Central column/main diagonal is A365376.
A000009 counts sets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],k]&]],{n,0,8},{k,0,n*(n+1)/2}]

A364913 Number of integer partitions of n having a part that can be written as a nonnegative linear combination of the other (possibly equal) parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 10, 12, 20, 27, 39, 51, 74, 95, 130, 169, 225, 288, 378, 479, 617, 778, 990, 1239, 1560, 1938, 2419, 2986, 3696, 4538, 5575, 6810, 8319, 10102, 12274, 14834, 17932, 21587, 25963, 31120, 37275, 44513, 53097, 63181, 75092, 89030, 105460, 124647
Offset: 0

Views

Author

Gus Wiseman, Aug 20 2023

Keywords

Comments

Includes all non-strict partitions (A047967).

Examples

			The a(0) = 0 through a(7) = 12 partitions:
  .  .  (11)  (21)   (22)    (41)     (33)      (61)
              (111)  (31)    (221)    (42)      (322)
                     (211)   (311)    (51)      (331)
                     (1111)  (2111)   (222)     (421)
                             (11111)  (321)     (511)
                                      (411)     (2221)
                                      (2211)    (3211)
                                      (3111)    (4111)
                                      (21111)   (22111)
                                      (111111)  (31111)
                                                (211111)
                                                (1111111)
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(12).
The partition (6,4,3,2) has 6 = 4+2, or 6 = 3+3, or 6 = 2+2+2, or 4 = 2+2, so is counted under a(15).
		

Crossrefs

The strict case is A364839.
For sums instead of combinations we have A364272, binary A364670.
The complement in strict partitions is A364350.
For subsets instead of partitions we have A364914, complement A326083.
Allowing equal parts gives A365068, complement A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A365006 = no strict partitions w/ pos linear combination.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#||Or@@Table[combs[#[[k]],Delete[#,k]]!={},{k,Length[#]}]&]],{n,0,15}]

Formula

a(n) + A364915(n) = A000041(n).

A365924 Number of incomplete integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 25, 38, 46, 64, 76, 106, 124, 167, 199, 261, 309, 402, 471, 604, 714, 898, 1053, 1323, 1542, 1911, 2237, 2745, 3201, 3913, 4536, 5506, 6402, 7706, 8918, 10719, 12364, 14760, 17045, 20234, 23296, 27600, 31678, 37365, 42910, 50371, 57695, 67628, 77300, 90242, 103131, 119997
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

The complement (complete partitions) is A126796.

Examples

			The a(0) = 0 through a(8) = 12 partitions:
  .  .  (2)  (3)  (4)    (5)    (6)      (7)      (8)
                  (2,2)  (3,2)  (3,3)    (4,3)    (4,4)
                  (3,1)  (4,1)  (4,2)    (5,2)    (5,3)
                                (5,1)    (6,1)    (6,2)
                                (2,2,2)  (3,2,2)  (7,1)
                                (4,1,1)  (3,3,1)  (3,3,2)
                                         (5,1,1)  (4,2,2)
                                                  (4,3,1)
                                                  (5,2,1)
                                                  (6,1,1)
                                                  (2,2,2,2)
                                                  (5,1,1,1)
		

Crossrefs

For parts instead of sums we have A047967/A365919, ranks A080259/A055932.
The complement is A126796, ranks A325781, strict A188431.
These partitions have ranks A365830.
The strict case is A365831.
Row sums of A365923 without the first column, strict A365545.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A276024 counts positive subset-sums of partitions, strict A284640.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[IntegerPartitions[n],Length[nmz[#]]>0&]],{n,0,15}]

Formula

a(n) = A000041(n) - A126796(n).

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]
Previous Showing 11-20 of 78 results. Next