cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 3, 3, 5, 7, 5, 5, 5, 5, 7, 11, 7, 8, 6, 8, 7, 11, 15, 11, 11, 11, 11, 11, 11, 15, 22, 15, 17, 15, 14, 15, 17, 15, 22, 30, 22, 23, 23, 22, 22, 23, 23, 22, 30, 42, 30, 33, 30, 33, 25, 33, 30, 33, 30, 42
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   3
   5   3   3   3   5
   7   5   5   5   5   7
  11   7   8   6   8   7  11
  15  11  11  11  11  11  11  15
  22  15  17  15  14  15  17  15  22
  30  22  23  23  22  22  23  23  22  30
  42  30  33  30  33  25  33  30  33  30  42
  56  42  45  44  44  43  43  44  44  45  42  56
  77  56  62  58  62  56  53  56  62  58  62  56  77
Row n = 6 counts the following partitions:
  (6)       (51)      (42)      (33)      (42)      (51)      (6)
  (51)      (411)     (411)     (321)     (411)     (411)     (51)
  (42)      (321)     (321)     (3111)    (321)     (321)     (42)
  (411)     (3111)    (3111)    (2211)    (3111)    (3111)    (411)
  (33)      (2211)    (222)     (21111)   (222)     (2211)    (33)
  (321)     (21111)   (2211)    (111111)  (2211)    (21111)   (321)
  (3111)    (111111)  (21111)             (21111)   (111111)  (3111)
  (222)               (111111)            (111111)            (222)
  (2211)                                                      (2211)
  (21111)                                                     (21111)
  (111111)                                                    (111111)
		

Crossrefs

Columns k = 0 and k = n are A000041.
Central column n = 2k is A002219.
The complement is counted by A046663, strict A365663.
Row sums are A304792.
For subsets instead of partitions we have A365381.
The strict case is A365661.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]

A046663 Triangle: T(n,k) = number of partitions of n (>=2) with no subsum equal to k (1 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 3, 4, 4, 4, 4, 4, 4, 4, 7, 5, 7, 8, 7, 5, 7, 8, 7, 7, 8, 8, 7, 7, 8, 12, 9, 12, 9, 17, 9, 12, 9, 12, 14, 11, 12, 12, 13, 13, 12, 12, 11, 14, 21, 15, 19, 15, 21, 24, 21, 15, 19, 15, 21, 24, 19, 20, 19, 21, 22, 22, 21, 19, 20, 19, 24, 34, 23, 30, 24, 30, 25, 46, 25, 30, 24, 30, 23, 34
Offset: 2

Views

Author

Keywords

Examples

			For n = 4 there are two partitions (4, 2+2) with no subsum equal to 1, two (4, 3+1) with no subsum equal to 2 and two (4, 2+2) with no subsum equal to 3.
Triangle T(n,k) begins:
   1;
   1,  1;
   2,  2,  2;
   2,  2,  2,  2;
   4,  3,  5,  3,  4;
   4,  4,  4,  4,  4,  4;
   7,  5,  7,  8,  7,  5,  7;
   8,  7,  7,  8,  8,  7,  7,  8;
  12,  9, 12,  9, 17,  9, 12,  9, 12;
  ...
From _Gus Wiseman_, Oct 11 2023: (Start)
Row n = 8 counts the following partitions:
  (8)     (8)    (8)     (8)     (8)     (8)    (8)
  (62)    (71)   (71)    (71)    (71)    (71)   (62)
  (53)    (53)   (62)    (62)    (62)    (53)   (53)
  (44)    (44)   (611)   (611)   (611)   (44)   (44)
  (422)   (431)  (44)    (53)    (44)    (431)  (422)
  (332)          (422)   (521)   (422)          (332)
  (2222)         (2222)  (5111)  (2222)         (2222)
                         (332)
(End)
		

Crossrefs

Column k = 0 and diagonal k = n are both A002865.
Central diagonal n = 2k is A006827.
The complement with expanded domain is A365543.
The strict case is A365663, complement A365661.
Row sums are A365918, complement A304792.
For subsets instead of partitions we have A366320, complement A365381.
A000041 counts integer partitions, strict A000009.
A276024 counts distinct subset-sums of partitions.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(0 in s or n in s, 0, `if`(n=0 or s={}, g(n, i),
         `if`(i<1, 0, b(n, i-1, s)+`if`(i>n, 0, b(n-i, i,
          select(y-> 0<=y and y<=n-i, map(x-> [x, x-i][], s)))))))
        end:
    T:= (n, k)-> b(n, n, {min(k, n-k)}):
    seq(seq(T(n, k), k=1..n-1), n=2..16);  # Alois P. Heinz, Jul 13 2012
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0, 1, If[i > 1, g[n, i-1], 0] + If[i > n, 0, g[n-i, i]]]; b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0 || s == {}, g[n, i], If[i < 1, 0, b[n, i-1, s] + If[i > n, 0, b[n-i, i, Select[Flatten[s /. x_ :> {x, x-i}], 0 <= # <= n-i &]]]]]]; t[n_, k_] := b[n, n, {Min[k, n-k]}]; Table[t[n, k], {n, 2, 16}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Aug 20 2013, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#],k]&]],{n,2,10},{k,1,n-1}] (* Gus Wiseman, Oct 11 2023 *)

Extensions

Corrected and extended by Don Reble, Nov 04 2001

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
Rows are palindromic.
Are there only two zeros in the whole triangle?

Examples

			Triangle begins:
  1
  1  1
  1  0  1
  2  1  1  2
  2  1  0  1  2
  3  1  1  1  1  3
  4  2  2  1  2  2  4
  5  2  2  2  2  2  2  5
  6  3  2  3  1  3  2  3  6
  8  3  3  4  3  3  4  3  3  8
Row n = 6 counts the following strict partitions:
  (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
  (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
  (4,2)                                                 (4,2)
  (3,2,1)                                               (3,2,1)
Row n = 10 counts the following strict partitions:
  A     91    82    73    64    532   64    73    82    91    A
  64    541   532   532   541   541   541   532   532   541   64
  73    631   721   631   631   4321  631   631   721   631   73
  82    721   4321  721   4321        4321  721   4321  721   82
  91    4321        4321                    4321        4321  91
  532                                                         532
  541                                                         541
  631                                                         631
  721                                                         721
  4321                                                        4321
		

Crossrefs

Columns k = 0 and k = n are A000009.
The non-strict complement is A046663, central column A006827.
Central column n = 2k is A237258.
For subsets instead of partitions we have A365381.
The non-strict case is A365543.
The complement is A365663.
A000124 counts distinct possible sums of subsets of {1..n}.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A068911 Number of n-step walks (each step +-1 starting from 0) which are never more than 2 or less than -2.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 108, 162, 324, 486, 972, 1458, 2916, 4374, 8748, 13122, 26244, 39366, 78732, 118098, 236196, 354294, 708588, 1062882, 2125764, 3188646, 6377292, 9565938, 19131876, 28697814, 57395628, 86093442, 172186884, 258280326, 516560652
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Comments

From Johannes W. Meijer, May 29 2010: (Start)
a(n) is the number of ways White can force checkmate in exactly (n+1) moves, n >= 0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6, g5 and h6; Black Ke8, Nh8, pawns b3, c7, d3, f7, g6 and h7. (After Noam D. Elkies, see link; diagram 5).
Counts all paths of length n, n >= 0, starting at the third node on the path graph P_5, see the Maple program. (End)
From Alec Jones, Feb 25 2016: (Start)
The a(n) are the n-th terms in a "Fibonacci snake" drawn on a rectilinear grid. The n-th term is computed as the sum of the previous terms in cells adjacent to the n-th cell (diagonals included). (This sequence excludes the first term of the snake.)
For example:
1 ... 1 1 ... 1 4 1 4 6 ... 1 4 6 1 4 6 ... and so on.
1 ... 1 2 1 2 ... 1 2 1 2 12 ... 1 2 12 18 (End)
From Gus Wiseman, Oct 06 2023: (Start)
Also the number of subsets of {1..n} containing no two distinct elements summing to n. The a(0) = 1 through a(4) = 12 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,3} {4}
{2,3} {1,2}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{2,3,4}
For n+1 instead of n we have A038754, complement A167762.
Including twins gives A117855, complement A366131.
The complement is counted by A365544.
For all subsets (not just pairs) we have A365377, complement A365376. (End)

Examples

			The a(3) = 6 walks: (0,-1,-2,-1), (0,-1,0,-1), (0,-1,0,1), (0,1,0,-1), (0,1,0,1), (0,1,2,1). - _Gus Wiseman_, Oct 10 2023
		

Crossrefs

Cf. A000007, A016116 (without initial term), A068912, A068913 for similar.
Equals A060647(n-1)+1.
First differences are A117855.

Programs

  • Magma
    [Floor((5-(-1)^n)*3^Floor(n/2)/3): n in [0..40]]; // Bruno Berselli, Feb 26 2016, after Charles R Greathouse IV
    
  • Maple
    with(GraphTheory): G:= PathGraph(5): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[3,k], k=1..5) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<2, n+1, (4-irem(n, 2))/2*a(n-1)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    Join[{1},Transpose[NestList[{Last[#],3First[#]}&,{2,4},40]][[1]]] (* Harvey P. Dale, Oct 24 2011 *)
    Table[Length[Select[Subsets[Range[n]],FreeQ[Total/@Subsets[#,{2}],n]&]],{n,0,15}] (* Gus Wiseman, Oct 06 2023 *)
  • PARI
    a(n)=[4,6][n%2+1]*3^(n\2)\3 \\ Charles R Greathouse IV, Feb 26 2016
    
  • Python
    def A068911(n): return 3**(n>>1)<<1 if n&1 else (3**(n-1>>1)<<2 if n else 1) # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A068913(2, n) = 2*A038754(n-1) = 3*a(n-2) = a(n-1)*a(n-2)/a(n-3) starting with a(0)=1, a(1)=2, a(2)=4 and a(3)=6.
For n>0: a(2n) = 4*3^(n-1) = 2*a(2n-1); a(2n+1) = 2*3^n = 3*a(2n)/2 = 2*a(2n)-A000079(n-2).
From Paul Barry, Feb 17 2004: (Start)
G.f.: (1+x)^2/(1-3x^2).
a(n) = 2*3^((n+1)/2)*((1-(-1)^n)/6 + sqrt(3)*(1+(-1)^n)/9) - (1/3)*0^n.
The sequence 0, 1, 2, 4, ... has a(n) = 2*3^(n/2)*((1+(-1)^n)/6 + sqrt(3)*(1-(-1)^n)/9) - (2/3)*0^n + (1/3)*Sum_{k=0..n} binomial(n, k)*k*(-1)^k. (End)
a(n) = 2^((3 + (-1)^n)/2)*3^((2*n - 3 - (-1)^n)/4) - ((1 - (-1)^(2^n)))/6. - Luce ETIENNE, Aug 30 2014
For n > 2, indexing from 0, a(n) = a(n-1) + a(n-2) if n is odd, a(n-1) + a(n-2) + a(n-3) if n is even. - Alec Jones, Feb 25 2016
a(n) = 2*a(n-1) if n is even, a(n-1) + a(n-2) if n is odd. - Vincenzo Librandi, Feb 26 2016
E.g.f.: (4*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) - 1)/3. - Stefano Spezia, Feb 17 2022

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]

A367213 Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions are necessarily incomplete (A365924).
Are there any decreases after the initial terms?

Examples

			The a(3) = 1 through a(9) = 8 partitions:
  (3)  (4)    (5)    (6)      (7)      (8)        (9)
       (3,1)  (4,1)  (3,3)    (4,3)    (4,4)      (5,4)
                     (5,1)    (6,1)    (5,3)      (6,3)
                     (2,2,2)  (5,1,1)  (7,1)      (8,1)
                     (4,1,1)           (4,2,2)    (4,4,1)
                                       (6,1,1)    (5,2,2)
                                       (5,1,1,1)  (7,1,1)
                                                  (6,1,1,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237667 counts sum-free partitions, sum-full A237668.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Extensions

a(41)-a(54) from Chai Wah Wu, Nov 13 2023

A371791 Number of biquanimous subsets of {1..n}. Sets with a subset having the same sum as the complement.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 38, 82, 175, 373, 787, 1651, 3439, 7126, 14667, 30049, 61249, 124440, 251922, 508779, 1025183, 2062287, 4142644, 8312927, 16667005, 33395275, 66880828, 133892910, 267976571, 536225921, 1072842931, 2146233971, 4293248183, 8587569636, 17176654105, 34355356676, 68713584720, 137430991937, 274867311960, 549741605972, 1099492913172, 2198998307679, 4398013970156, 8796049891377, 17592130283755, 35184298506429
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			For S = {1,3,4,6} we have {{1,6},{3,4}}, so S is counted under a(6).
The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}  {}       {}         {}         {}
              {1,2,3}  {1,2,3}    {1,2,3}    {1,2,3}
                       {1,3,4}    {1,3,4}    {1,3,4}
                       {1,2,3,4}  {1,4,5}    {1,4,5}
                                  {2,3,5}    {1,5,6}
                                  {1,2,3,4}  {2,3,5}
                                  {1,2,4,5}  {2,4,6}
                                  {2,3,4,5}  {1,2,3,4}
                                             {1,2,3,6}
                                             {1,2,4,5}
                                             {1,2,5,6}
                                             {1,3,4,6}
                                             {2,3,4,5}
                                             {2,3,5,6}
                                             {3,4,5,6}
                                             {1,2,3,4,6}
                                             {1,2,4,5,6}
                                             {2,3,4,5,6}
		

Crossrefs

First differences are A232466.
The complement is counted by A371792, differences A371793.
This is the "bi-" case of A371796, differences A371797.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],biqQ]],{n,0,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025
Showing 1-10 of 32 results. Next