cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 80 results. Next

A365311 Number of strict integer partitions with sum <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 11, 12, 20, 24, 35, 38, 63, 63, 92, 112, 148, 160, 230, 244, 339, 383, 478, 533, 726, 781, 978, 1123, 1394, 1526, 1960, 2112, 2630, 2945, 3518, 3964, 4856, 5261, 6307, 7099, 8464, 9258, 11140, 12155, 14419, 16093, 18589, 20565, 24342, 26597, 30948
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The strict partition (6,3) cannot be linearly combined to obtain 10, so is not counted under a(10).
The strict partition (4,2) has 6 = 1*4 + 1*2 so is counted under a(6), but (4,2) cannot be linearly combined to obtain 7 so is not counted under a(7).
The a(1) = 1 through a(7) = 12 strict partitions:
  (1)  (1)  (1)    (1)    (1)    (1)      (1)
       (2)  (3)    (2)    (5)    (2)      (7)
            (2,1)  (4)    (2,1)  (3)      (2,1)
                   (2,1)  (3,1)  (6)      (3,1)
                   (3,1)  (3,2)  (2,1)    (3,2)
                          (4,1)  (3,1)    (4,1)
                                 (3,2)    (4,3)
                                 (4,1)    (5,1)
                                 (4,2)    (5,2)
                                 (5,1)    (6,1)
                                 (3,2,1)  (3,2,1)
                                          (4,2,1)
		

Crossrefs

For positive coefficients we have A088314.
The positive complement is counted by A088528.
The version for subsets is A365073.
The complement is counted by A365312.
For non-strict partitions we have A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Join@@Array[IntegerPartitions,n],UnsameQ@@#&],combs[n,#]!={}&]],{n,10}]
  • Python
    from math import isqrt
    from sympy.utilities.iterables import partitions
    def A365311(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m,m=isqrt(1+(n<<3))>>1) if max(b.values()) == 1 and any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(26)-a(50) from Chai Wah Wu, Sep 13 2023

A365377 Number of subsets of {1..n} without a subset summing to n.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 17, 26, 49, 72, 134, 201, 366, 544, 984, 1436, 2614, 3838, 6770, 10019, 17767, 25808, 45597, 66671, 116461, 169747, 295922, 428090, 750343, 1086245, 1863608, 2721509, 4705456, 6759500, 11660244, 16877655, 28879255, 41778027, 71384579, 102527811, 176151979
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(1) = 1 through a(6) = 17 subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {1,2}  {4}    {4}
                {2,3}  {1,2}  {5}
                       {1,3}  {1,2}
                       {2,4}  {1,3}
                       {3,4}  {1,4}
                              {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {1,3,4}
                              {2,3,5}
                              {3,4,5}
		

Crossrefs

The complement w/ re-usable parts is A365073.
The complement is counted by A365376.
The version with re-usable parts is A365380.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.
A365381 counts subsets of {1..n} with a subset summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#],n]&]],{n,0,10}]
  • PARI
    isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1);
    a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
    
  • Python
    from itertools import combinations, chain
    from sympy.utilities.iterables import partitions
    def A365377(n):
        if n == 0: return 0
        nset = set(range(1,n+1))
        s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1
        for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):
            if sum(a) >= n:
                aset = set(a)
                for p in s:
                    if p.issubset(aset):
                        c += 1
                        break
        return (1<Chai Wah Wu, Sep 09 2023

Formula

a(n) = 2^n-A365376(n). - Chai Wah Wu, Sep 09 2023

Extensions

a(16)-a(27) from Michel Marcus, Sep 09 2023
a(28)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
More terms from David A. Corneth, Sep 10 2023

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A364532 Positive integers with a prime index equal to the sum of prime indices of some nonprime divisor. Heinz numbers of a variation of sum-full partitions.

Original entry on oeis.org

12, 24, 30, 36, 40, 48, 60, 63, 70, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 150, 154, 156, 160, 165, 168, 180, 189, 192, 198, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 320, 324, 325, 330
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A299729 (non-knapsack) in lacking 525: {2,3,3,4}.
First differs from A325777 in having 462: {1,2,4,5} and lacking 675:{2,2,2,3,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of partitions containing the sum of some non-singleton submultiset.

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  60: {1,1,2,3}
  63: {2,2,4}
  70: {1,3,4}
  72: {1,1,1,2,2}
  80: {1,1,1,1,3}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

Partitions not of this type are counted by A237667, strict A364349.
Partitions of this type are counted by A237668, strict A364272.
The binary complement is A364461, re-usable A364347 (counted by A364345).
The binary version is A364462, re-usable A364348 (counted by A363225).
The complement is A364531.
Subsets of this type are counted by A364534, complement A151897.
A000005 counts divisors, nonprime A033273, composite A055212.
A001222 counts prime indices.
A108917 counts knapsack partitions, strict A275972, for subsets A325864.
A112798 lists prime indices, sum A056239.
A299701 counts distinct subset-sums of prime indices.
A299702 ranks knapsack partitions, complement A299729.

Programs

  • Mathematica
    Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]!={}&]

A364912 Triangle read by rows where T(n,k) is the number of ways to write n as a positive linear combination of an integer partition of k.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 4, 5, 0, 1, 4, 8, 7, 7, 0, 1, 6, 13, 17, 12, 11, 0, 1, 6, 18, 28, 30, 19, 15, 0, 1, 8, 24, 50, 58, 53, 30, 22
Offset: 0

Views

Author

Gus Wiseman, Aug 20 2023

Keywords

Comments

A way of writing n as a positive linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i > 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(2,2)) are a way of writing 8 as a positive linear combination of (1,1,2), namely 8 = 3*1 + 1*1 + 2*2.

Examples

			Triangle begins:
  1
  0  1
  0  1  2
  0  1  2  3
  0  1  4  4  5
  0  1  4  8  7  7
  0  1  6 13 17 12 11
  0  1  6 18 28 30 19 15
  0  1  8 24 50 58 53 30 22
Row n = 4 counts the following linear combinations:
  .  1*4  2*2      2*1+1*2      4*1
          1*1+1*3  1*1+1*1+1*2  3*1+1*1
          1*2+1*2  1*1+1*2+1*1  2*1+2*1
          1*3+1*1  1*2+1*1+1*1  2*1+1*1+1*1
                                1*1+1*1+1*1+1*1
Row n = 5 counts the following linear combinations:
  .  1*5  1*1+1*4  2*1+1*3      3*1+1*2          5*1
          1*2+1*3  2*2+1*1      2*1+1*1+1*2      4*1+1*1
          1*3+1*2  1*1+1*1+1*3  2*1+1*2+1*1      3*1+2*1
          1*4+1*1  1*1+1*2+1*2  1*1+1*1+1*1+1*2  3*1+1*1+1*1
                   1*1+1*3+1*1  1*1+1*1+1*2+1*1  2*1+2*1+1*1
                   1*2+1*1+1*2  1*1+1*2+1*1+1*1  2*1+1*1+1*1+1*1
                   1*2+1*2+1*1  1*2+1*1+1*1+1*1  1*1+1*1+1*1+1*1+1*1
                   1*3+1*1+1*1
Array begins:
  1   0   0   0    0    0    0     0
  1   1   1   1    1    1    1     1
  2   2   4   4    6    6    8     8
  3   4   8   13   18   24   33    40
  5   7   17  28   50   70   107   143
  7   12  30  58   108  179  286   428
  11  19  53  109  223  394  696   1108
  15  30  86  194  420  812  1512  2619
		

Crossrefs

Row k = 0 is A000007.
Row k = 1 is A000012.
Column n = 0 is A000041.
Column n = 1 is A000070.
Row sums are A006951.
Row k = 2 is A052928 except initial terms.
The case of strict integer partitions is A116861.
Central column is T(2n,n) = A(n,n) = A364907(n).
With rows reversed we have the nonnegative version A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combp[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}]
    - or -
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n-k,ptn],{ptn,IntegerPartitions[k]}]],{n,0,6},{k,0,n}]

Formula

As an array, also the number of ways to write n-k as a nonnegative linear combination of an integer partition of k (see programs).

A364670 Number of strict integer partitions of n with a part equal to the sum of two distinct others. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 7, 6, 10, 10, 14, 16, 24, 25, 34, 39, 48, 59, 71, 81, 103, 120, 136, 166, 194, 226, 260, 312, 353, 419, 473, 557, 636, 742, 824, 974, 1097, 1266, 1418, 1646, 1837, 2124, 2356, 2717, 3029, 3469, 3830, 4383, 4884, 5547
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The a(6) = 1 through a(16) = 10 strict partitions (A = 10):
  321  .  431  .  532   5321  642   5431  743   6432   853
                  541         651   6421  752   6531   862
                  4321        5421  7321  761   7431   871
                              6321        5432  7521   6532
                                          6431  9321   6541
                                          6521  54321  7432
                                          8321         7621
                                                       8431
                                                       A321
                                                       64321
		

Crossrefs

For subsets of {1..n} we have A088809, complement A085489.
The non-strict version is A237113, complement A236912.
The non-binary complement is A237667, ranks A364532.
Allowing re-used parts gives A363226, non-strict A363225.
The non-binary version is A364272, non-strict A237668.
The complement is A364533, non-binary A364349.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]]!={}&]],{n,0,30}]

A365002 Number of ways to write n as a nonnegative linear combination of a strict integer partition.

Original entry on oeis.org

1, 1, 2, 4, 8, 10, 26, 32, 63, 84, 157, 207, 383, 477, 768, 1108, 1710, 2261, 3536, 4605, 6869, 9339, 13343, 17653, 25785, 33463, 46752, 61549, 85614, 110861, 153719, 197345, 268623, 346845, 463513, 593363, 797082, 1011403, 1335625, 1703143, 2232161, 2820539
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(1) = 1 through a(5) = 10 ways:
  1*1  1*2  1*3      1*4      1*5
       2*1  3*1      2*2      5*1
            0*2+3*1  4*1      0*2+5*1
            1*2+1*1  0*2+4*1  0*3+5*1
                     0*3+4*1  0*4+5*1
                     1*2+2*1  1*2+3*1
                     1*3+1*1  1*3+1*2
                     2*2+0*1  1*3+2*1
                              1*4+1*1
                              2*2+1*1
		

Crossrefs

Row sums of lower-left half of A364916 as an array.
Column sums of right half of A364916 as a triangle.
For all positive coefficients we have A000041, non-strict A006951.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Sum[Length[combs[n,y]], {y,Select[Join@@IntegerPartitions/@Range[n], UnsameQ@@#&]}],{n,0,15}]
  • Python
    from itertools import combinations
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A365002(n):
        aset = Counter(tuple(sorted(set(p))) for p in partitions(n))
        return sum(sum(aset[t] for t in aset if set(t).issubset(set(q))) for l in range(1,n+1) for q in combinations(range(1,n+1),l) if sum(q)<=n) # Chai Wah Wu, Sep 20 2023

Extensions

a(16)-a(34) from Chai Wah Wu, Sep 20 2023
a(35)-a(38) from Chai Wah Wu, Sep 21 2023
a(0)=1 and a(39)-a(41) from Alois P. Heinz, Jan 11 2024

A365320 Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 7, 5, 12, 12, 27, 14, 42, 36, 47, 47, 83, 58, 109, 80, 116, 126, 172, 111, 195, 192, 219, 202, 294, 210, 342, 286, 354, 369, 409, 324, 509, 480, 523, 452, 640, 507, 711, 622, 675, 747, 865, 654, 916, 842, 964, 922, 1124, 940, 1147, 1029
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15?

Examples

			The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9).
The a(5) = 2 through a(10) = 12 pairs:
  (2,4)  (4,5)  (2,4)  (3,6)  (2,4)  (3,6)
  (3,4)         (2,6)  (3,7)  (2,6)  (3,8)
                (3,5)  (5,6)  (2,8)  (3,9)
                (3,6)  (5,7)  (4,6)  (4,7)
                (4,5)  (6,7)  (4,7)  (4,8)
                (4,6)         (4,8)  (4,9)
                (5,6)         (5,6)  (6,7)
                              (5,7)  (6,8)
                              (5,8)  (6,9)
                              (6,7)  (7,8)
                              (6,8)  (7,9)
                              (7,8)  (8,9)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A365312, complement A365311.
The (binary) complement is A365314, positive A365315.
The case of positive coefficients is A365321, for all subsets A365322.
For partitions we have A365378, complement A365379.
For all subsets instead of just pairs we have A365380, complement A365073.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365320(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 13 2023

A365004 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of an integer partition of k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 2, 1, 0, 5, 4, 4, 1, 0, 7, 7, 8, 4, 1, 0, 11, 12, 17, 13, 6, 1, 0, 15, 19, 30, 28, 18, 6, 1, 0, 22, 30, 53, 58, 50, 24, 8, 1, 0, 30, 45, 86, 109, 108, 70, 33, 8, 1, 0, 42, 67, 139, 194, 223, 179, 107, 40, 10, 1, 0, 56, 97, 213, 328, 420, 394, 286, 143, 50, 10, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 23 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			Array begins:
  1  1  2   3   5    7     11
  0  1  2   4   7    12    19
  0  1  4   8   17   30    53
  0  1  4   13  28   58    109
  0  1  6   18  50   108   223
  0  1  6   24  70   179   394
  0  1  8   33  107  286   696
  0  1  8   40  143  428   1108
  0  1  10  50  199  628   1754
  0  1  10  61  254  882   2622
  0  1  12  72  332  1215  3857
  0  1  12  84  410  1624  5457
  0  1  14  99  517  2142  7637
The A(4,2) = 6 ways:
  2*2
  0*1+4*1
  1*1+3*1
  2*1+2*1
  3*1+1*1
  4*1+0*1
		

Crossrefs

Row n = 0 is A000041, strict A000009.
Row n = 1 is A000070.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A052928 except initial terms.
Antidiagonal sums are A006951.
The case of strict integer partitions is A116861.
Main diagonal is A364907.
The transpose is A364912, also the positive version.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    A:= (n, k)-> b(k$2, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    nn=5;
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    tabv=Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[k]}]],{n,0,nn},{k,0,nn}]
    Table[tabv[[k+1,n-k+1]],{n,0,nn},{k,0,n}]

Formula

Also the number of ways to write n-k as a *positive* linear combination of an integer partition of k.

Extensions

Antidiagonals 8-11 from Alois P. Heinz, Jan 28 2024

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   4  0  2  0  1  0
   5  1  0  3  1  1  0
   8  0  3  0  3  0  1  0
  10  2  1  2  2  3  1  1  0
  16  0  5  0  3  0  5  0  1  0
  20  2  2  4  2  6  0  4  1  1  0
  31  0  6  0  8  0  5  0  5  0  1  0
  39  4  4  4  1  6  6  3  2  6  1  1  0
  55  0 13  0  8  0 12  0  6  0  6  0  1  0
  71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
Row n = 6 counts the following partitions:
  (321)     (411)  .  (51)   (33)  (6)  .
  (3111)              (42)
  (2211)              (222)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The rank statistic counted by this triangle is A325799.
The strict case is A365545, weighted row sums A365922.
The complement (positive subset-sum) is A365658.
Weighted row sums are A365918, for positive subset-sums A304792.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]
Previous Showing 41-50 of 80 results. Next