cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A364670 Number of strict integer partitions of n with a part equal to the sum of two distinct others. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 7, 6, 10, 10, 14, 16, 24, 25, 34, 39, 48, 59, 71, 81, 103, 120, 136, 166, 194, 226, 260, 312, 353, 419, 473, 557, 636, 742, 824, 974, 1097, 1266, 1418, 1646, 1837, 2124, 2356, 2717, 3029, 3469, 3830, 4383, 4884, 5547
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The a(6) = 1 through a(16) = 10 strict partitions (A = 10):
  321  .  431  .  532   5321  642   5431  743   6432   853
                  541         651   6421  752   6531   862
                  4321        5421  7321  761   7431   871
                              6321        5432  7521   6532
                                          6431  9321   6541
                                          6521  54321  7432
                                          8321         7621
                                                       8431
                                                       A321
                                                       64321
		

Crossrefs

For subsets of {1..n} we have A088809, complement A085489.
The non-strict version is A237113, complement A236912.
The non-binary complement is A237667, ranks A364532.
Allowing re-used parts gives A363226, non-strict A363225.
The non-binary version is A364272, non-strict A237668.
The complement is A364533, non-binary A364349.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]]!={}&]],{n,0,30}]

A364756 Number of subsets of {1..n} containing n and some element equal to the sum of two distinct others.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 40, 87, 196, 413, 875, 1812, 3741, 7640, 15567, 31493, 63666, 128284, 257977, 518045, 1039478, 2083719, 4174586, 8359837, 16735079, 33493780, 67020261, 134090173, 268250256, 536609131, 1073358893, 2146942626, 4294183434, 8588837984, 17178273355
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is not counted under a(8).
The subset {2,3,4,6} has pair-sum 2 + 4 = 6, so is counted under a(6).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Partial sums are A088809, non-binary A364534.
With re-usable parts we have differences of A093971, complement A288728.
The complement with n is counted by A364755, partial sums A085489(n) - 1.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}]

Formula

First differences of A088809.

Extensions

a(16) onwards added (using A088809) by Andrew Howroyd, Jan 13 2024

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A365544 Number of subsets of {1..n} containing two distinct elements summing to n.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 28, 74, 148, 350, 700, 1562, 3124, 6734, 13468, 28394, 56788, 117950, 235900, 484922, 969844, 1979054, 3958108, 8034314, 16068628, 32491550, 64983100, 131029082, 262058164, 527304974, 1054609948, 2118785834, 4237571668, 8503841150, 17007682300
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Examples

			The a(1) = 0 through a(5) = 14 subsets:
  .  .  {1,2}    {1,3}      {1,4}
        {1,2,3}  {1,2,3}    {2,3}
                 {1,3,4}    {1,2,3}
                 {1,2,3,4}  {1,2,4}
                            {1,3,4}
                            {1,4,5}
                            {2,3,4}
                            {2,3,5}
                            {1,2,3,4}
                            {1,2,3,5}
                            {1,2,4,5}
                            {1,3,4,5}
                            {2,3,4,5}
                            {1,2,3,4,5}
		

Crossrefs

For strict partitions we have A140106 shifted left.
The version for partitions is A004526.
The complement is counted by A068911.
For all subsets of elements we have A365376.
Main diagonal k = n of A365541.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365381 counts subsets with a subset summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n]&]],{n,0,10}]
  • Python
    def A365544(n): return (1<>1)<<1 if n&1 else 3**(n-1>>1)<<2) if n else 0 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = 2^n - A068911(n).
From Alois P. Heinz, Aug 30 2024: (Start)
G.f.: 2*x^3/((2*x-1)*(3*x^2-1)).
a(n) = 2 * A167762(n-1) for n>=1. (End)

A088528 Let m = number of ways of partitioning n into parts using all the parts of a subset of {1, 2, ..., n-1} whose sum of all parts of a subset is less than n; a(n) gives number of different subsets of {1, 2, ..., n-1} whose m is 0.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 6, 10, 12, 17, 18, 26, 30, 40, 44, 58, 66, 84, 95, 120, 135, 166, 186, 230, 257, 314, 350, 421, 476, 561, 626, 749, 831, 986, 1095, 1276, 1424, 1666, 1849, 2138, 2388, 2741, 3042, 3522, 3879, 4441, 4928, 5617, 6222, 7084, 7802, 8852, 9800
Offset: 1

Views

Author

Naohiro Nomoto, Nov 16 2003

Keywords

Comments

Note that {2, 3} is counted for n = 6 because although 6 = 2+2+2 = 3+3, there is no partition that includes both 2 and 3. - David Wasserman, Aug 09 2005
Said differently, a(n) is the number of finite nonempty sets of positive integers with sum < n that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023

Examples

			a(5)=3 because there are three different subsets, {2}, {3} & {4}; a(6)=3 because there are three different subsets, {4}, {5} & {2,3}.
From _Gus Wiseman_, Sep 10 2023: (Start)
The set {3,5} is not counted under a(8) because 1*3 + 1*5 = 8, but it is counted under a(9) and a(10), and it is not counted under a(11) because 2*3 + 1*5 = 11.
The a(3) = 1 through a(11) = 17 subsets:
  {2}  {3}  {2}  {4}    {2}    {3}    {2}    {3}      {2}
            {3}  {5}    {3}    {5}    {4}    {4}      {3}
            {4}  {2,3}  {4}    {6}    {5}    {6}      {4}
                        {5}    {7}    {6}    {7}      {5}
                        {6}    {2,5}  {7}    {8}      {6}
                        {2,4}  {3,4}  {8}    {9}      {7}
                                      {2,4}  {2,5}    {8}
                                      {2,6}  {2,7}    {9}
                                      {3,4}  {3,5}    {10}
                                      {3,5}  {3,6}    {2,4}
                                             {4,5}    {2,6}
                                             {2,3,4}  {2,8}
                                                      {3,6}
                                                      {3,7}
                                                      {4,5}
                                                      {4,6}
                                                      {2,3,5}
(End)
		

Crossrefs

The complement is A088571, allowing sum n A088314.
For sets with max < n instead of sum < n we have A365045, nonempty A070880.
For nonnegative coefficients we have A365312, complement A365311.
For sets with max <= n we have A365322.
For partitions we have A365323, nonnegative A365378.
A116861 and A364916 count linear combinations of strict partitions.
A326083 and A124506 appear to count combination-free subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Subsets[Range[n]],0Gus Wiseman, Sep 12 2023 *)

Extensions

More terms from David Wasserman, Aug 09 2005

A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Also subsets of {1..n} containing n whose greatest element cannot be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  {1}  {2}  {3}    {4}        {5}
               {2,3}  {3,4}      {2,5}
                      {2,3,4}    {3,5}
                      {1,2,3,4}  {4,5}
                                 {2,4,5}
                                 {3,4,5}
                                 {1,2,3,5}
                                 {1,2,4,5}
                                 {1,3,4,5}
                                 {2,3,4,5}
                                 {1,2,3,4,5}
		

Crossrefs

The nonempty case is A070880.
The nonnegative version is A124506, first differences of A326083.
The binary version is A288728, first differences of A007865.
A subclass is A341507.
The complement is counted by A365042, first differences of A365043.
First differences of A365044.
The nonnegative complement is A365046, first differences of A364914.
The binary complement is A365070, first differences of A093971.
Without re-usable parts we have A365071, first differences of A151897.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A070880(n) + 1 for n > 0.

A117855 Number of nonzero palindromes of length n (in base 3).

Original entry on oeis.org

2, 2, 6, 6, 18, 18, 54, 54, 162, 162, 486, 486, 1458, 1458, 4374, 4374, 13122, 13122, 39366, 39366, 118098, 118098, 354294, 354294, 1062882, 1062882, 3188646, 3188646, 9565938, 9565938, 28697814, 28697814, 86093442, 86093442, 258280326, 258280326, 774840978
Offset: 1

Views

Author

Martin Renner, May 02 2006

Keywords

Comments

See A225367 for the sequence that counts all base 3 palindromes, including 0 (and thus also the number of n-digit terms in A006072). -- A nonzero palindrome of length L=2k-1 or of length L=2k is determined by the first k digits, which then determine the last k digits by symmetry. Since the first digit cannot be 0, there are 2*3^(k-1) possibilities. - M. F. Hasler, May 05 2013
From Gus Wiseman, Oct 18 2023: (Start)
Also the number of subsets of {1..n} with n not the sum of two subset elements (possibly the same). For example, the a(0) = 1 through a(4) = 6 subsets are:
{} {} {} {} {}
{1} {2} {1} {1}
{2} {3}
{3} {4}
{1,3} {1,4}
{2,3} {3,4}
For subsets with no subset summing to n we have A365377.
Requiring pairs to be distinct gives A068911, complement A365544.
The complement is counted by A366131.
(End) [Edited by Peter Munn, Nov 22 2023]

Examples

			The a(3)=6 palindromes of length 3 are: 101, 111, 121, 202, 212, and 222. - _M. F. Hasler_, May 05 2013
		

Crossrefs

Cf. A050683 and A070252.
Bisections are both A025192.
A093971/A088809/A364534 count certain types of sum-full subsets.
A108411 lists powers of 3 repeated, complement A167936.

Programs

  • Mathematica
    With[{c=NestList[3#&,2,20]},Riffle[c,c]] (* Harvey P. Dale, Mar 25 2018 *)
    Table[Length[Select[Subsets[Range[n]],!MemberQ[Total/@Tuples[#,2],n]&]],{n,0,10}] (* Gus Wiseman, Oct 18 2023 *)
  • PARI
    A117855(n)=2*3^((n-1)\2) \\ - M. F. Hasler, May 05 2013
    
  • Python
    def A117855(n): return 3**(n-1>>1)<<1 # Chai Wah Wu, Oct 28 2024

Formula

a(n) = 2*3^floor((n-1)/2).
a(n) = 2*A108411(n-1).
From Colin Barker, Feb 15 2013: (Start)
a(n) = 3*a(n-2).
G.f.: -2*x*(x+1)/(3*x^2-1). (End)

Extensions

More terms from Colin Barker, Feb 15 2013

A070880 Consider the 2^(n-1)-1 nonempty subsets S of {1, 2, ..., n-1}; a(n) gives number of such S for which it is impossible to partition n into parts from S such that each s in S is used at least once.

Original entry on oeis.org

0, 0, 1, 3, 10, 22, 52, 110, 234, 482, 987, 1997, 4035, 8113, 16288, 32644, 65388, 130886, 261922, 524013, 1048250, 2096752, 4193831, 8388033, 16776543, 33553621, 67107918, 134216596, 268434139, 536869354, 1073740011, 2147481510, 4294964833, 8589931699
Offset: 1

Views

Author

Naohiro Nomoto, Nov 16 2003

Keywords

Comments

Also the number of nonempty subsets of {1..n-1} that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023

Examples

			a(4)=3 because there are three different subsets S of {1,2,3} satisfying the condition: {3}, {2,3} & {1,2,3}. For the other subsets S, such as {1,2}, there is a partition of 4 which uses them all (such as 4 = 1+1+2).
From _Gus Wiseman_, Sep 10 2023: (Start)
The a(6) = 22 subsets:
  {4}  {2,3}  {1,2,4}  {1,2,3,4}  {1,2,3,4,5}
  {5}  {2,5}  {1,2,5}  {1,2,3,5}
       {3,4}  {1,3,4}  {1,2,4,5}
       {3,5}  {1,3,5}  {1,3,4,5}
       {4,5}  {1,4,5}  {2,3,4,5}
              {2,3,4}
              {2,3,5}
              {2,4,5}
              {3,4,5}
(End)
		

Crossrefs

For sets with sum < n instead of maximum < n we have A088528.
The complement is counted by A365042, including empty set A088314.
Allowing empty sets gives A365045, nonnegative version apparently A124506.
Without re-usable parts we have A365377(n) - 1.
For nonnegative (instead of positive) coefficients we have A365380(n) - 1.
A326083 counts combination-free subsets, complement A364914.
A364350 counts combination-free strict partitions, complement A364913.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Rest[Subsets[Range[n-1]]], combp[n,#]=={}&]],{n,7}] (* Gus Wiseman, Sep 10 2023 *)
  • Python
    from sympy.utilities.iterables import partitions
    def A070880(n): return (1<Chai Wah Wu, Sep 10 2023

Formula

a(n) = 2^(n-1) - A088314(n). - Charlie Neder, Feb 08 2019
a(n) = A365045(n) - 1. - Gus Wiseman, Sep 10 2023

Extensions

Edited by N. J. A. Sloane, Sep 09 2017
a(20)-a(34) from Alois P. Heinz, Feb 08 2019

A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

Sets of this type may be called "positive combination-free".
Also subsets of {1..n} such that no element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8).
The a(0) = 1 through a(5) = 20 subsets:
  {}  {}   {}   {}     {}         {}
      {1}  {1}  {1}    {1}        {1}
           {2}  {2}    {2}        {2}
                {3}    {3}        {3}
                {2,3}  {4}        {4}
                       {2,3}      {5}
                       {3,4}      {2,3}
                       {2,3,4}    {2,5}
                       {1,2,3,4}  {3,4}
                                  {3,5}
                                  {4,5}
                                  {2,3,4}
                                  {2,4,5}
                                  {3,4,5}
                                  {1,2,3,4}
                                  {1,2,3,5}
                                  {1,2,4,5}
                                  {1,3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

The binary version is A007865, first differences A288728.
The binary complement is A093971, first differences A365070.
Without re-usable parts we have A151897, first differences A365071.
The nonnegative version is A326083, first differences A124506.
A subclass is A341507.
The nonnegative complement is A364914, first differences A365046.
The complement is counted by A365043, first differences A365042.
First differences are A365045.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365044(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365043(n).

Extensions

a(15)-a(34) from Chai Wah Wu, Nov 20 2023

A365315 Number of unordered pairs of distinct positive integers <= n that can be linearly combined using positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 5, 8, 10, 12, 15, 18, 20, 24, 28, 28, 35, 37, 42, 44, 49, 49, 60, 59, 66, 65, 79, 74, 85, 84, 93, 93, 107, 100, 120, 104, 126, 121, 142, 129, 145, 140, 160, 150, 173, 154, 189, 170, 196, 176, 208, 193, 223, 202, 238, 203, 241, 227, 267, 235
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			We have 19 = 4*3 + 1*7, so the pair (3,7) is counted under a(19).
For the pair p = (2,3), we have 4 = 2*2 + 0*3, so p is counted under A365314(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is not counted under a(4).
The a(3) = 1 through a(10) = 15 pairs:
  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
         (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
                (1,4)  (1,4)  (1,4)  (1,4)  (1,4)  (1,4)
                (2,3)  (1,5)  (1,5)  (1,5)  (1,5)  (1,5)
                       (2,4)  (1,6)  (1,6)  (1,6)  (1,6)
                              (2,3)  (1,7)  (1,7)  (1,7)
                              (2,5)  (2,3)  (1,8)  (1,8)
                              (3,4)  (2,4)  (2,3)  (1,9)
                                     (2,6)  (2,5)  (2,3)
                                     (3,5)  (2,7)  (2,4)
                                            (3,6)  (2,6)
                                            (4,5)  (2,8)
                                                   (3,4)
                                                   (3,7)
                                                   (4,6)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For all subsets instead of just pairs we have A088314, complement A365322.
For strict partitions we have A088571, complement A088528.
The case of nonnegative coefficients is A365314, for all subsets A365073.
The (binary) complement is A365321, nonnegative A365320.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}],combp[n,#]!={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365315(n):
        a = set()
        for i in range(1,n+1):
            for j in count(i,i):
                if j >= n:
                    break
                for d in divisors(n-j):
                    if d>=i:
                        break
                    a.add((d,i))
        return len(a) # Chai Wah Wu, Sep 13 2023
Previous Showing 31-40 of 51 results. Next