cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A371792 Number of non-biquanimous subsets of {1..n}. Sets with no subset having the same sum as the complement.

Original entry on oeis.org

0, 1, 3, 6, 12, 24, 46, 90, 174, 337, 651, 1261, 2445, 4753, 9258, 18101, 35487, 69823, 137704, 272366, 539797, 1071969, 2132017, 4245964, 8464289, 16887427, 33713589, 67336900, 134542546, 268894341, 537515903, 1074640717, 2148733325, 4296686409, 8592299548, 17183084263, 34364120060, 68725368752, 137446915007, 274888501928, 549770021804, 1099530342380, 2199048203425, 4398079052052, 8796136153039, 17592241805077, 35184445671235
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The subsets of S = {1,4,6,7} have distinct sums {0,1,4,5,6,7,8,10,11,12,13,14,17,18}. Since 9 is missing, S is counted under a(7).
The a(0) = 0 through a(4) = 12 subsets:
  .  {1}  {1}    {1}    {1}
          {2}    {2}    {2}
          {1,2}  {3}    {3}
                 {1,2}  {4}
                 {1,3}  {1,2}
                 {2,3}  {1,3}
                        {1,4}
                        {2,3}
                        {2,4}
                        {3,4}
                        {1,2,4}
                        {2,3,4}
		

Crossrefs

This is the "bi-" version of A371789, differences A371790.
The complement is counted by A371791, differences A232466.
First differences are A371793.
The complement is the "bi-" version of A371796, differences A371797.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],Not@*biqQ]],{n,0,10}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A371794 Number of non-biquanimous strict integer partitions of n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 12, 11, 18, 15, 27, 23, 38, 30, 54, 43, 76, 57, 104, 79, 142, 102, 192, 138, 256, 174, 340, 232, 448, 292, 585, 375, 760, 471, 982, 602, 1260, 741, 1610, 935, 2048, 1148, 2590, 1425, 3264, 1733, 4097, 2137, 5120, 2571, 6378
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(11) = 12 strict partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)   (64)   (65)
                        (41)  (51)  (52)   (62)   (63)   (73)   (74)
                                    (61)   (71)   (72)   (82)   (83)
                                    (421)  (521)  (81)   (91)   (92)
                                                  (432)  (631)  (A1)
                                                  (531)  (721)  (542)
                                                  (621)         (632)
                                                                (641)
                                                                (731)
                                                                (821)
                                                                (5321)
		

Crossrefs

The complement is counted by A237258 aerated, ranks A357854.
Even bisection is A321142, odd A078408.
This is the "bi-" version of A371736, complement A371737.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!biqQ[#]&]],{n,0,30}]

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023

A182616 Number of partitions of 2n that contain odd parts.

Original entry on oeis.org

0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Bisection (even part) of A086543.

Examples

			For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
  (2)  (4)     (6)       (8)
       (31)    (42)      (53)
       (1111)  (51)      (62)
               (222)     (71)
               (411)     (332)
               (2211)    (521)
               (21111)   (611)
               (111111)  (2222)
                         (3221)
                         (3311)
                         (5111)
                         (22211)
                         (32111)
                         (221111)
                         (311111)
                         (2111111)
                         (11111111)
(End)
		

Crossrefs

Cf. A304710.
Bisection of A086543, with ranks A366322.
The case of all odd parts is A035294, bisection of A000009.
The strict case is A365828.
These partitions have ranks A366530.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions with at least one odd and even part, ranks A366532.
A047967 counts partitions with at least one even part, ranks A324929.
A086543 counts partitions of n not containing n/2, ranks A366319.
A366527 counts partitions of 2n with an even part, ranks A366529.

Programs

  • Maple
    with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
    Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)

Formula

a(n) = A000041(2*n) - A000041(n).

Extensions

Edited by Alois P. Heinz, Dec 03 2010

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Views

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A366754 Number of non-knapsack integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 52, 60, 94, 118, 175, 213, 310, 373, 528, 643, 862, 1044, 1403, 1699, 2199, 2676, 3426, 4131, 5256, 6295, 7884, 9479, 11722, 14047, 17296, 20623, 25142, 29942, 36299, 43081, 51950, 61439, 73668, 87040, 103748, 122149, 145155, 170487
Offset: 0

Views

Author

Gus Wiseman, Nov 08 2023

Keywords

Comments

A multiset is non-knapsack if there exist two different submultisets with the same sum.

Examples

			The a(4) = 1 through a(9) = 13 partitions:
  (211)  (2111)  (321)    (3211)    (422)      (3321)
                 (2211)   (22111)   (431)      (4221)
                 (3111)   (31111)   (3221)     (4311)
                 (21111)  (211111)  (4211)     (5211)
                                    (22211)    (32211)
                                    (32111)    (33111)
                                    (41111)    (42111)
                                    (221111)   (222111)
                                    (311111)   (321111)
                                    (2111111)  (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

The complement is counted by A108917, strict A275972, ranks A299702.
These partitions have ranks A299729.
The strict case is A316402.
The binary version is A366753, ranks A366740.
A000041 counts integer partitions, strict A000009.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sum of partitions, strict A365925.
A365543 counts partitions with subset-sum k, complement A046663.
A365661 counts strict partitions with subset-sum k, complement A365663.
A366738 counts semi-sums of partitions, strict A366741.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Total/@Union[Subsets[#]]&]], {n,0,15}]

Formula

a(n) = A000041(n) - A108917(n).

A371793 Number of non-biquanimous subsets of {1..n} containing n.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 44, 84, 163, 314, 610, 1184, 2308, 4505, 8843, 17386, 34336, 67881, 134662, 267431, 532172, 1060048, 2113947, 4218325, 8423138, 16826162, 33623311, 67205646, 134351795, 268621562, 537124814, 1074092608, 2147953084, 4295613139, 8590784715, 17181035797, 34361248692, 68721546255, 137441586921, 274881519876, 549760320576, 1099517861045, 2199030848627, 4398057100987, 8796105652038, 17592203866158
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(5) = 12 subsets:
  {1}  {2}    {3}    {4}      {5}
       {1,2}  {1,3}  {1,4}    {1,5}
              {2,3}  {2,4}    {2,5}
                     {3,4}    {3,5}
                     {1,2,4}  {4,5}
                     {2,3,4}  {1,2,5}
                              {1,3,5}
                              {2,4,5}
                              {3,4,5}
                              {1,2,3,5}
                              {1,3,4,5}
                              {1,2,3,4,5}
		

Crossrefs

The complement is counted by A232466, differences of A371791.
This is the "bi-" version of A371790, differences of A371789.
First differences of A371792.
The complement is the "bi-" version of A371797, differences of A371796.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!biqQ[#]&]],{n,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   4  0  2  0  1  0
   5  1  0  3  1  1  0
   8  0  3  0  3  0  1  0
  10  2  1  2  2  3  1  1  0
  16  0  5  0  3  0  5  0  1  0
  20  2  2  4  2  6  0  4  1  1  0
  31  0  6  0  8  0  5  0  5  0  1  0
  39  4  4  4  1  6  6  3  2  6  1  1  0
  55  0 13  0  8  0 12  0  6  0  6  0  1  0
  71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
Row n = 6 counts the following partitions:
  (321)     (411)  .  (51)   (33)  (6)  .
  (3111)              (42)
  (2211)              (222)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The rank statistic counted by this triangle is A325799.
The strict case is A365545, weighted row sums A365922.
The complement (positive subset-sum) is A365658.
Weighted row sums are A365918, for positive subset-sums A304792.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
Is column k = n - 7 given by A325695?

Examples

			Triangle begins:
  1
  1  0
  0  1  0
  1  0  1  0
  0  1  0  1  0
  0  0  2  0  1  0
  1  0  0  2  0  1  0
  1  0  0  0  3  0  1  0
  0  1  1  0  0  3  0  1  0
  0  0  3  0  0  0  4  0  1  0
  1  0  0  2  2  0  0  4  0  1  0
  1  0  0  0  5  0  0  0  5  0  1  0
  2  0  0  0  0  5  2  0  0  5  0  1  0
  2  0  1  0  0  0  8  0  0  0  6  0  1  0
  1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
  2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
  1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
  2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
  3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
Row n = 12: counts the following partitions:
  (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
  (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
                         (7,4,1)                 (9,3)
                         (7,3,2)                 (8,4)
                         (5,4,3)                 (7,5)
		

Crossrefs

Row sums are A000009, non-strict A000041.
The complement (positive subset-sums) is also A365545 with rows reversed.
Weighted row sums are A365922, non-strict A365918.
The non-strict version is A365923, complement A365658, rank stat A325799.
A046663 counts partitions without a subset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]
Previous Showing 21-30 of 57 results. Next