cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 172 results. Next

A166133 After initial 1,2,4, a(n+1) is the smallest divisor of a(n)^2-1 that has not yet appeared in the sequence.

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 6, 5, 12, 11, 10, 9, 16, 15, 14, 13, 21, 20, 19, 18, 17, 24, 23, 22, 69, 28, 27, 26, 25, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 201, 80, 79
Offset: 1

Views

Author

Keywords

Comments

The initial 1,2,4 provides the smallest example with this rule that is not simply the integers in order, nor (apparently) ends with all divisors of a(n)^2-1 already present.
Apparently the sequence is infinite and includes every positive integer.
Apr 05 2015: John Mason has computed the first ten million terms. See link to zipped file. - N. J. A. Sloane, Apr 06 2015
The sequence contains many runs of incrementing and decrementing values. In the 1200 steps following the 4, there are 136 increments, 706 decrements, and 358 larger steps. What is the limiting distribution for these steps? [Click the "listen" button to appreciate these runs. - N. J. A. Sloane, Apr 03 2015]
After 3, 198, 270, 570, 522, 600, 822, and 882, we have a(n+1) = a(n)^2-1. Does this happen infinitely often? Cf. A256406, A256407.
A256543 gives numbers m such that a(m+1) = a(m)-1 or a(m+1) = a(m)+1. - Reinhard Zumkeller, Apr 01 2015
If this is a permutation, then A255833 is the inverse permutation. - M. F. Hasler, Apr 01 2015
a(A256703(n)+1) = a(A256703(n))^2 - 1. - Reinhard Zumkeller, Apr 08 2015
For n > 3: a(n) = A027750(a(n-1)^2-1, A256751(n)). - Reinhard Zumkeller, Apr 09 2015

Examples

			After a(24) = 22, the divisors of 22^2-1 = 483 are 1, 3, 7, 21, 23, 69, 161, and 483; 1, 3, 7, 21, and 23 have already occurred, so a(25) = 69.
		

Crossrefs

For records see A256403, A256404.
Smallest missing numbers: A256405, A256408, A256409.
Cf. A256541 (first differences), A256543.
Inverse (conjectured): A255833.
Cf. A256564 (smallest prime factors), A244080 (largest prime factors), A256578 (largest proper divisors), A256542 (number of divisors).
Upper envelope: the sequence of pairs (A256422(n),A256423(n)).
Cf. A256703.
Cf. A256751.

Programs

  • Haskell
    import Data.List (delete); import Data.List.Ordered (isect)
    a166133 n = a166133_list !! (n-1)
    a166133_list = 1 : 2 : 4 : f (3:[5..]) 4 where
       f zs x = y : f (delete y zs) y where
                y = head $ isect (a027750_row' (x ^ 2 - 1)) zs
    -- Reinhard Zumkeller, Apr 01 2015
  • Mathematica
    s = {1, 2, 4}; e = 4; Do[d = Divisors[e^2 - 1]; i = 1;
    While[MemberQ[s, d[[i]]], i++]; e = d[[i]]; AppendTo[s, e], {19997}]; s (* Hans Havermann, Apr 03 2015 *)
  • PARI
    al(n,m=4,u=6)={local(ds,db);
    u=bitor(u,1<
    				

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A108618 A quaternion-generated sequence calculated using the rules given in the comment box with initial seed x = .5'i + .5'j + .5'k + .5e; version: "tes".

Original entry on oeis.org

1, 2, -1, -2, -3, -6, -6, 1, 4, 3, 0, -5, -10, -8, 3, 8, 5, -2, -9, -12, -6, 7, 16, 10, -9, -18, -11, 4, 15, 14, -2, -16, -20, -3, 14, 17, 6, -12, -24, -11, 10, 21, 14, -8, -22, -20, 3, 20, 17, -2, -21, -24, -6, 19, 28, 10, -21, -36, -18, 19, 40, 22, -21, -42, -23, 16, 39, 26, -14, -40, -32, 9, 38, 29, -8, -39, -36, 2, 36, 38, -1, -38
Offset: 0

Views

Author

Creighton Dement, Jun 12 2005

Keywords

Comments

Set y = x = .5'i + .5'j + .5'k + .5e Define a(0) = 1 (this is twice the coefficient of the unit e in x), then "loop" steps 1-5, below. a(n) is given by twice the coefficient of e (the unit) in y from step 4 inside the n-th loop. Step 1 (Loop 1): Calculate x*y Result: x*y = .5'i + .5'j + .5'k - .5e Step 2 (Loop 1): Add the fractional parts of the real coefficient basis vectors of x*y (i.e. 'i, 'j, 'k, e) Result: .5 + .5 + .5 - .5 = 1 = s Step 3 (Loop 1): Calculate x + x*y + se Result .5'i + .5'j + .5'k + .5e + (.5'i + .5'j + .5'k - .5e) + se = 'i + 'j + 'k + e. Step 4 (Loop 1): Set y equal to the result from Step 3. Result: y = 'i + 'j + 'k + e; thus a(1) = 2*1 = 2 Step 5 (Loop 1): Return to Step 1 Step 1 (Loop 2): Result: x*y = 'i + 'j + 'k - e Step 2 (Loop 2): Result: s = 0 Step 3 (Loop 2): 1.5'i + 1.5'j + 1.5'k -.5e Step 4 (Loop 2): y = 1.5'i + 1.5'j + 1.5'k -.5e; thus a(2) = 2*(-.5) = -1 **Loop 1** + 'i + 'j + 'k + e **Loop 2** + 1.5'i + 1.5'j + 1.5'k - .5e **Loop 3** + 'i + 'j + 'k - e **Loop 4** + .5'i + .5'j + .5'k - 1.5e **Loop 5** - 3e **Loop 6** - 'i - 'j - 'k - 3e **Loop 7** - 1.5'i - 1.5'j - 1.5'k + .5e **Loop 8** + 2e **Loop 9** + 1.5'i + 1.5'j + 1.5'k + 1.5e **Loop 10** + 2'i + 2'j + 2'k **Loop 11** + 1.5'i + 1.5'j + 1.5'k - 2.5e **Loop 12** - 5e
Notice the horizontal line segments in the graph of (a(n)) against the natural numbers. These may be referred to as "Gerald's diamonds" (after Gerald McGarvey, who pointed them out shortly after this sequence was submitted). It could be an interesting task to find the approximate area of these diamonds and compare to the approximate area of the other diamonds.
From Benoit Jubin, Aug 12 2009: (Start)
Define the function f on the integers to be the odd function such that for n>=0, f(2n)=0 and f(2n+1)=1. Define the sequences a and b by
a(0)=b(0)=0,
a(n+1) = 1 + (a(n)-3b(n))/2 + f((a(n)-3b(n))/2) + 3 f((a(n)+b(n))/2),
b(n+1) = 1 + (a(n)+b(n))/2.
Then (with an offset shifted by 1), a=A108618 and b=A108619. (End)

Crossrefs

Programs

  • Mathematica
    a[0] = b[0] = 0;
    f[n_] := Sign[n]*Mod[n, 2];
    a[n_] := a[n] = (1/2)*(a[n-1] - 3*b[n-1]) + 3*f[(1/2)*(a[n-1] + b[n-1])] + f[(1/2)*(a[n-1] - 3*b[n-1])] + 1;
    b[n_] := b[n] = (1/2)*(a[n-1] + b[n-1]) + 1;
    A108618 = Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 25 2015, after Benoit Jubin *)

A261422 Number of ordered triples (u,v,w) of palindromes such that u+v+w=n.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 63, 72, 79, 84, 87, 88, 87, 84, 79, 72, 66, 55, 51, 45, 40, 36, 33, 31, 30, 30, 30, 33, 27, 34, 33, 33, 33, 33, 33, 33, 33, 33, 36, 27, 39, 36, 36, 36, 36, 36, 36, 36, 36, 39, 27, 45, 39, 39, 39, 39, 39, 39, 39, 39, 42, 27, 52, 42, 42, 42, 42, 42, 42, 42, 42, 45
Offset: 0

Views

Author

N. J. A. Sloane, Aug 27 2015

Keywords

Comments

It is known that a(n)>0 for all n.

Examples

			4 can be written as a sum of three palindromes in 15 ways: 4+0+0 (3 ways), 3+1+0 (6 ways), 2+2+0 (3 ways), and 2+1+1 (3 ways), so a(4)=15.
		

Crossrefs

Cf. A002113. Differs from A261132, which assumes 0 <= u <= v <= w.
For records see A262544, A262545.

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *)
    compositions[n_, k_] := Flatten[Permutations[PadLeft[#, k]]& /@ IntegerPartitions[n, k], 1];
    a[n_] := Select[compositions[n, 3], AllTrue[#, PalindromeQ]&] // Length;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 05 2018 *)

Formula

G.f. = P(x)^3, where P(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^11 + x^22 + x^33 + x^44 + x^55 + x^66 + x^77 + x^88 + x^99 + x^101 + x^111 + ... = Sum_{palindromes p} x^p.

A255582 a(n)=n when n <= 3, otherwise a(n) is the smallest positive number not yet in the sequence such that gcd(a(n), a(n-1)) <= gcd(a(n), a(n-2)) > 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 5, 14, 15, 7, 18, 21, 16, 27, 20, 33, 24, 11, 26, 22, 13, 28, 39, 32, 30, 34, 25, 17, 35, 51, 40, 42, 38, 36, 19, 44, 57, 46, 45, 23, 48, 69, 50, 54, 52, 58, 56, 29, 49, 87, 63, 60, 77, 62, 55, 31, 65, 93, 70, 66, 64, 74, 68, 37
Offset: 1

Views

Author

Bob Selcoe, Feb 26 2015

Keywords

Comments

This is a permutation of the natural numbers: the proof for A098550 applies with essentially no changes. [Confirmed by N. J. A. Sloane, Feb 27 2015]
For n > 3, all primes first appear in order as composites with one smaller prime (proof similar to that in A098550).
For any given set S of primes, the subsequence consisting of numbers whose prime factors are exactly the primes in S appears in increasing order. For example, if S = {2,3}, 6 appears first, followed by 12, 18, 24, 36, 48, 54, 72, etc.
Appears to be very similar to A064413. Compare the respective inverses A255479 and A064664; see also A255482. Speaking very loosely, the ratio a(n)/n seems to be about 1/2, 1, or 3/2, just as for A064413, although this is a long way from being proved for either sequence. David Applegate points out that this is (presumably) because primes p >= 13 always occur as part of a subsequence 2p X p Y 3p, and subsequences 2p X p Y 5p, 2p X p Y 7p, etc. that produced the extra curves in the graph of A098550 just do not happen. - N. J. A. Sloane, Feb 27 2015, Mar 05 2015.
First differs from A254077 at a(29). - Omar E. Pol, May 21 2015

Crossrefs

A255479 is the inverse permutation.
A256424 is a smoothed version.
A256529 gives the partial sums.

Programs

  • Haskell
    import Data.List (delete)
    a255582 n = a255582_list !! (n-1)
    a255582_list = 1 : 2 : 3 : f 2 3 [4..] where
       f u v ws = y : f v y (delete y ws) where
                  y = head [z | z <- ws, let d = gcd u z, d > 1, gcd v z <= d]
    -- Reinhard Zumkeller, Mar 10 2015
  • Mathematica
    a[n_] := a[n] = If[n<5, n, For[k=5, True, k++, If[FreeQ[Array[a, n-1], k], If[GCD[k, a[n-2]]>1 && GCD[k, a[n-1]] <= GCD[k, a[n-2]], Return[k]]]]];
    Array[a, 100] (* Jean-François Alcover, Jul 31 2018 *)

Extensions

a(41)-a(67) from Hiroaki Yamanouchi, Feb 27 2015

A333216 Lengths of maximal subsequences without adjacent equal terms in the sequence of prime gaps.

Original entry on oeis.org

2, 13, 21, 3, 7, 8, 1, 18, 29, 5, 3, 8, 11, 31, 4, 20, 3, 7, 5, 19, 21, 32, 1, 19, 48, 19, 29, 32, 7, 38, 1, 43, 12, 33, 46, 6, 16, 8, 4, 34, 15, 1, 19, 7, 1, 23, 28, 30, 22, 8, 1, 7, 1, 52, 14, 56, 10, 26, 2, 30, 65, 5, 71, 12, 44, 39, 37, 6, 19, 47, 11, 10
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.
Essentially the same as A145024. - R. J. Mathar, Mar 16 2020

Examples

			The prime gaps split into the following subsequences without adjacent equal terms: (1,2), (2,4,2,4,2,4,6,2,6,4,2,4,6), (6,2,6,4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10,2,6), (6,4,6), (6,2,10,2,4,2,12), (12,4,2,4,6,2,10,6), ...
		

Crossrefs

First differences of A064113.
The version for the Kolakoski sequence is A306323.
The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The strictly decreasing version is A333252.
The strictly increasing version is A333253.
The equal version is A333254.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],UnsameQ]//Most

Formula

Ones correspond to balanced prime quartets (A054800), so the sum of terms up to but not including the n-th one is A000720(A054800(n - 1)) = A090832(n).

A325225 Lesser of the number of prime factors of n counted with multiplicity and the maximum prime index of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 4, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 1, 3, 2, 3, 2, 2, 2, 2, 1, 3, 3, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			88 has 4 prime indices {1,1,1,5}, the maximum of which is 5, so a(88) = min(4,5) = 4.
		

Crossrefs

Positions of 1's are A174090. Positions of 2's are A325229.

Programs

  • Mathematica
    Table[Min[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]],{n,100}]
  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325225(n) = min(bigomega(n), A061395(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = min(A001222(n), A061395(n)).

Extensions

More terms from Antti Karttunen, Apr 14 2019

A093873 Numerators in Kepler's tree of harmonic fractions.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 4, 3, 4, 2, 5, 3, 5, 1, 4, 3, 4, 2, 5, 3, 5, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 5, 4, 5, 3, 7, 4, 7, 2, 7, 5, 7, 3, 8, 5, 8, 1, 6, 5, 6, 4, 9, 5, 9, 3, 10, 7, 10, 4, 11, 7, 11, 2, 9, 7, 9, 5, 12, 7, 12, 3, 11, 8, 11, 5, 13, 8, 13, 1, 6
Offset: 1

Views

Author

Keywords

Comments

Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).

Examples

			The first few fractions are:
1 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 5 3 5 1 4 3 4 2 5 3 5
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ...
1 2 2 3 3 3 3 4 4 5 5 4 4 5 5 5 5 7 7 7 7 8 8 5 5 7 7 7 7 8 8
		

Crossrefs

The denominators are in A093875. Usually one only considers the left-hand half of the tree, which gives the fractions A020651/A086592. See A086592 for more information, references to Kepler, etc.
See A294442 for another version of Kepler's tree of fractions.

Programs

  • Haskell
    {-# LANGUAGE ViewPatterns #-}
    import Data.Ratio((%), numerator, denominator)
    rat :: Rational -> (Integer,Integer)
    rat r = (numerator r, denominator r)
    data Harmony = Harmony Harmony Rational Harmony
    rows :: Harmony -> [[Rational]]
    rows (Harmony hL r hR) = [r] : zipWith (++) (rows hL) (rows hR)
    kepler :: Rational -> Harmony
    kepler r = Harmony (kepler (i%(i+j))) r (kepler (j%(i+j)))
               where (rat -> (i,j)) = r
    -- Full tree of Kepler's harmonic fractions:
    k = rows $ kepler 1 :: [[Rational]] -- as list of lists
    h = concat k :: [Rational] -- flattened
    a093873 n = numerator $ h !! (n - 1)
    a093875 n = denominator $ h !! (n - 1)
    a011782 n = numerator $ (map sum k) !! n -- denominator == 1
    -- length (k !! n) == 2^n
    -- numerator $ (map last k) !! n == fibonacci (n + 1)
    -- denominator $ (map last k) !! n == fibonacci (n + 2)
    -- numerator $ (map maximum k) !! n == n
    -- denominator $ (map maximum k) !! n == n + 1
    -- eop.
    -- Reinhard Zumkeller, Oct 17 2010
  • Maple
    M:= 8: # to get a(1) .. a(2^M-1)
    gen[1]:= [1];
    for n from 2 to M do
      gen[n]:= map(t -> (numer(t)/(numer(t)+denom(t)),
          denom(t)/(numer(t)+denom(t))), gen[n-1]);
    od:
    seq(op(map(numer,gen[i])),i=1..M): # Robert Israel, Jan 11 2016
  • Mathematica
    num[1] = num[2] = 1; den[1] = 1; den[2] = 2; num[n_?EvenQ] := num[n] = num[n/2]; den[n_?EvenQ] := den[n] = num[n/2] + den[n/2]; num[n_?OddQ] := num[n] = den[(n-1)/2]; den[n_?OddQ] := den[n] = num[(n-1)/2] + den[(n-1)/2]; A093873 = Table[num[n], {n, 1, 97}] (* Jean-François Alcover, Dec 16 2011 *)

Formula

a(n) = a([n/2])*(1 - n mod 2) + A093875([n/2])*(n mod 2).
a(A029744(n-1)) = 1; a(A070875(n-1)) = 2; a(A123760(n-1)) = 3. - Reinhard Zumkeller, Oct 13 2006
A011782(k) = SUM(a(n)/A093875(n): 2^k<=n<2^(k+1)), k>=0. [Reinhard Zumkeller, Oct 17 2010]
a(1) = 1. For all n>0 a(2n) = a(n), a(2n+1) = A093875(n). - Yosu Yurramendi, Jan 09 2016
a(4n+3) = a(4n+1), a(4n+2) = a(4n+1) - a(4n), a(4n+1) = A071585(n). - Yosu Yurramendi, Jan 11 2016
G.f. G(x) satisfies G(x) = x + (1+x) G(x^2) + Sum_{k>=2} x (1+x^(2^(k-1))) G(x^(2^k)). - Robert Israel, Jan 11 2016
a(2^(m+1)+k) = a(2^(m+1)+2^m+k) = A020651(2^m+k), m>=0, 0<=k<2^m. - Yosu Yurramendi, May 18 2016
a(k) = A020651(2^(m+1)+k) - A020651(2^m+k), m>0, 0Yosu Yurramendi, Jun 01 2016
a(2^(m+1)+k) - a(2^m+k) = a(k) , m >=0, 0 <= k < 2^m. For k=0 a(0)=0 is needed. - Yosu Yurramendi, Jul 22 2016
a(2^(m+2)-1-k) = a(2^(m+1)-1-k) + a(2^m-1-k), m >= 1, 0 <= k < 2^m. - Yosu Yurramendi, Jul 22 2016
a(2^m-1-(2^r -1)) = A000045(m-r), m >= 1, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
a(2^m+2^r) = m-r, , m >= 1, 0 <= r <= m-1 ; a(2^m+2^r+2^(r-1)) = m-(r-1), m >= 2, 0 <= r <= m-1. - Yosu Yurramendi, Jul 22 2016
A093875(2n) - a(2n) = A093875(n), n > 0; A093875(2n+1) - a(2n+1) = a(n), n > 0. - Yosu Yurramendi, Jul 23 2016

A248034 a(n+1) gives the number of occurrences of the last digit of a(n) so far, up to and including a(n), with a(0)=0.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 10, 5, 5, 6, 5, 7, 5, 8, 5, 9, 5, 10, 6, 6, 7, 6, 8, 6, 9, 6, 10, 7, 7, 8, 7, 9, 7, 10, 8, 8, 9, 8, 10, 9, 9, 10
Offset: 0

Views

Author

Eric Angelini and M. F. Hasler, Oct 11 2014

Keywords

Comments

In other words, the number to the right of a comma gives the number of occurrences of the digit immediately to the left of the comma, counting from the beginning up to that digit or comma.

Crossrefs

Cf. A249068 (analogous sequence in base 8).
Cf. A249009 (analogous sequence which uses the first, not the last digit).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          coeff(b(n-1), x, irem(a(n-1), 10)))
        end:
    b:= proc(n) option remember; `if`(n=0, 1, b(n-1)+
          add(x^i, i=convert(a(n), base, 10)))
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Oct 18 2014
  • Mathematica
    nn = 120; a[0] = j = 0; c[] := 0; Do[Map[c[#]++ &, IntegerDigits[j]]; a[n] = j = c[Mod[j, 10]], {n, nn}]; Array[a, nn, 0] (* _Michael De Vlieger, Aug 07 2023 *)
  • PARI
    c=vector(10);print1(a=0);for(n=1,99,apply(d->c[d+1]++,if(a,digits(a)));print1(","a=c[1+a%10]))
    (MIT/GNU Scheme)
    ;; An implementation of memoization-macro definec can be found for example from: http://oeis.org/wiki/Memoization
    (definec (A248034 n) (if (zero? n) n (vector-ref (A248034aux_digit_counts (- n 1)) (modulo (A248034 (- n 1)) 10))))
    (definec (A248034aux_digit_counts n) (cond ((zero? n) (vector 1 0 0 0 0 0 0 0 0 0)) (else (let loop ((digcounts-for-n (vector-copy (A248034aux_digit_counts (- n 1)))) (n (A248034 n))) (cond ((zero? n) digcounts-for-n) (else (vector-set! digcounts-for-n (modulo n 10) (+ 1 (vector-ref digcounts-for-n (modulo n 10)))) (loop digcounts-for-n (floor->exact (/ n 10)))))))))
    ;; Antti Karttunen, Oct 22 2014
    
  • Python
    from itertools import islice
    def A248034_gen(): # generator of terms
        c, clist = 0, [1]+[0]*9
        while True:
            yield c
            c = clist[c%10]
            for d in str(c):
                clist[int(d)] += 1
    A248034_list = list(islice(A248034_gen(),30)) # Chai Wah Wu, Dec 13 2022

A268289 a(0)=0; thereafter a(n) = a(n-1) - A037861(n).

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 4, 7, 5, 5, 5, 7, 7, 9, 11, 15, 12, 11, 10, 11, 10, 11, 12, 15, 14, 15, 16, 19, 20, 23, 26, 31, 27, 25, 23, 23, 21, 21, 21, 23, 21, 21, 21, 23, 23, 25, 27, 31, 29, 29, 29, 31, 31, 33, 35, 39, 39, 41, 43, 47, 49
Offset: 0

Views

Author

Mark Moore, Jan 30 2016

Keywords

Comments

The graph of this sequence is related to the Takagi (blancmange) curve: see Lagarias (2012), Section 9, especially Theorem 9.1. [Corrected by Laura Monroe, Oct 21 2020]
Theorem: a(n) is the cardinality of the set { 1<= m <= n, ((n-m) mod 2^floor(log_2(m)+1)) < 2^floor(log_2(m)) }. See links.
From Laura Monroe, Jun 11 2020: (Start)
Consider a full balanced binary tree with n unlabeled leaves such that for each internal node, the number of leaf descendants of the two children differs by at most 1. Call a tree with this even distribution of leaves "pairwise".
Apply labels to the internal nodes, where an internal node is labeled S if its two children have the same number of leaf descendants, and D if its two children have a different number of leaf descendants, and call this an SD-tree. (For a pairwise tree, this is equivalent to saying that a node is an S-node iff it has an even number of leaf descendants.)
a(n) is then the number of S-nodes on a pairwise SD-tree with n+1 leaves.
This is proved in Props. 17 and 18 of the Monroe et al. article in the links.
One example of such a tree is the summation tree generated by a pairwise summation on n+1 summands (see example below). Another example is the tree representing a neutral single-elimination tournament on n+1 teams, as in A096351.
(End)
From Laura Monroe, Oct 23 2020: (Start)
Subtracting a(n) from n gives a sequence of dilations of increasing length on the dyadic rational points of the Takagi function. The number of points in each dilation is 2^k and the scale of each dilation in both the x and y directions is 2^k, where k = floor(log_2(n+1)).
2^(a(n)) is the number of tree automorphisms on the pairwise (i.e., divide-and-conquer) tree with n+1 leaves.
(End)

Examples

			From _Laura Monroe_, Jun 11 2020: (Start)
For n=2, the pairwise summation on 2+1=3 summands takes the form ((a+b)+c). The corresponding summation tree and SD-tree look like:
       +            D
      / \          / \
     +   c        S   c
    / \          / \
   a   b        a   b
and exactly 1 internal node has an even number of leaf descendants, hence is an S-node.
For n=3, the pairwise summation on 3+1=4 summands takes the form ((a+b)+(c+d)). The corresponding summation tree and SD-tree look like:
       +            S
      / \          / \
     +   +        S   S
    /|   |\      /|   |\
   a b   c d    a b   c d
and exactly 3 internal nodes have an even number of leaf descendants, hence are S-nodes.
(End)
		

Crossrefs

Programs

  • C
    int a(int n)   {
        int m=n+1;
        int result=0;
        int i=0;
        while (n) {
            int ith_bit_set = m&(1<>= 1;
        }
       return result;
    }
    /* Laura Monroe, Jun 17 2020 */
    
  • Julia
    function A268289List(len)
        A = zeros(Int, len)
        for n in 1:len-1
            a, b, c = n, n & 1, 1
            while (a >>= 1) != 0
                b += a & 1
                c += 1
            end
            A[n+1] = A[n] + <<(b, 1) - c
        end
        A
    end; println(A268289List(61)) # Peter Luschny, Jun 22 2020
  • Maple
    a000120 := proc(n) add(i, i=convert(n, base, 2)) end:
    a023416 := proc(n) if n = 0 then 1; else add(1-e, e=convert(n, base, 2)) ; end if; end proc:
    a268289:=proc(n) option remember; global a000120, a023416;
    if n=0 then 0 else a268289(n-1)+a000120(n)-a023416(n); fi; end;
    [seq(a268289(n),n=0..132)];
    # N. J. A. Sloane, Mar 07 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n<0, 0,
          a(n-1)+add(2*i-1, i=Bits[Split](n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 18 2022
  • Mathematica
    Join[{0}, Table[DigitCount[n, 2, 1] - DigitCount[n, 2, 0], {n, 1, 100}] // Accumulate] (* Jean-François Alcover, Oct 24 2016 *)
  • PARI
    a(n) = if (n==0, 0, if (n%2, 2*a((n-1)/2)+1, a(n/2) + a(n/2-1))); \\ Michel Marcus, Jun 16 2020
    
  • PARI
    a(n) = my(v=binary(n+1),s=-1); for(i=1,#v, v[i]=if(v[i],s++,s--;1)); fromdigits(v,2); \\ Kevin Ryde, Jun 16 2020
    
  • Python
    def A268289(n): return (sum(i.bit_count() for i in range(1,n+1))<<1)-1-(n+1)*(m:=(n+1).bit_length())+(1<Chai Wah Wu, Mar 01 2023
    
  • Python
    def A268289(n): return sum((n+1)%m if (n+1)&(m:=1<Chai Wah Wu, Nov 11 2024
    

Formula

From N. J. A. Sloane, Mar 11 2016: (Start)
a(0)=0; for n > 0, a(n) = a(n-1) + A000120(n) - A023416(n) = A000788(n) - A181132(n).
a(0)=0; thereafter a(2*n) = a(n) + a(n-1), a(2*n+1) = 2*a(n) + 1.
G.f.: (1/(1-x)^2) * Sum_{k >= 0} x^(2^k)*(1-x^(2^k))/(1+x^(2^k)).
a(2^k-1) = 2^k-1, a(3*2^k-1) = 2^(k+1)-1, a(5*2^k-1) = 3*2^k-1, etc.
(End)
From Laura Monroe, Jun 11 2020: (Start)
a(n-1) = Sum_{i=0..floor(log_2(n))} (((floor(n/(2^i))+1) mod 2)*(2^i)+(-1)^((floor(n/(2^i))+1) mod 2)*(n mod (2^i))), for n>=1.
This is an explicit formula for this sequence, and is O(log(n)). This formula is proven in Prop. 18, in the Monroe et al. reference in the links. (End)
From Laura Monroe, Oct 23 2020: (Start)
a(n) = n - A296062(n).
a(n+1) = (n+1) - (2^k)*tau(x/(2^k)), where tau is the Takagi function and n+1 = (2^k)+x with x < 2^k. (End)

Extensions

Simplified definition following a suggestion from Michel Marcus. Corrected start, added more terms. - N. J. A. Sloane, Mar 07 2016
Previous Showing 41-50 of 172 results. Next