A000070 a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ... From _Omar E. Pol_, Oct 25 2012: (Start) For n = 5 consider the partitions of n+1: -------------------------------------- . Number Partitions of 6 of 1's -------------------------------------- 6 .......................... 0 3 + 3 ...................... 0 4 + 2 ...................... 0 2 + 2 + 2 .................. 0 5 + 1 ...................... 1 3 + 2 + 1 .................. 1 4 + 1 + 1 .................. 2 2 + 2 + 1 + 1 .............. 2 3 + 1 + 1 + 1 .............. 3 2 + 1 + 1 + 1 + 1 .......... 4 1 + 1 + 1 + 1 + 1 + 1 ...... 6 ------------------------------------ 35-16 = 19 . The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19. (End) From _Gus Wiseman_, Oct 26 2018: (Start) With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n: (2) (4) (6) (8) (A) (C) (31) (42) (53) (64) (75) (51) (62) (73) (84) (411) (71) (82) (93) (521) (91) (A2) (611) (622) (B1) (5111) (631) (732) (721) (741) (811) (822) (6211) (831) (7111) (921) (61111) (A11) (7221) (7311) (8211) (9111) (72111) (81111) (711111) With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n: (11) (211) (2211) (22211) (222211) (2222211) (1111) (3111) (32111) (322111) (3222111) (21111) (41111) (331111) (3321111) (111111) (221111) (421111) (4221111) (311111) (511111) (4311111) (2111111) (2221111) (5211111) (11111111) (3211111) (6111111) (4111111) (22221111) (22111111) (32211111) (31111111) (33111111) (211111111) (42111111) (1111111111) (51111111) (222111111) (321111111) (411111111) (2211111111) (3111111111) (21111111111) (111111111111) (End) From _Joerg Arndt_, Jan 01 2024: (Start) The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are: 1: {{1, 1, 1, 1, 1, 2}} 2: {{1, 1, 1, 1, 1}, {2}} 3: {{1, 1, 1, 1, 2}, {1}} 4: {{1, 1, 1, 1}, {1, 2}} 5: {{1, 1, 1, 1}, {1}, {2}} 6: {{1, 1, 1, 2}, {1, 1}} 7: {{1, 1, 1, 2}, {1}, {1}} 8: {{1, 1, 1}, {1, 1, 2}} 9: {{1, 1, 1}, {1, 1}, {2}} 10: {{1, 1, 1}, {1, 2}, {1}} 11: {{1, 1, 1}, {1}, {1}, {2}} 12: {{1, 1, 2}, {1, 1}, {1}} 13: {{1, 1, 2}, {1}, {1}, {1}} 14: {{1, 1}, {1, 1}, {1, 2}} 15: {{1, 1}, {1, 1}, {1}, {2}} 16: {{1, 1}, {1, 2}, {1}, {1}} 17: {{1, 1}, {1}, {1}, {1}, {2}} 18: {{1, 2}, {1}, {1}, {1}, {1}} 19: {{1}, {1}, {1}, {1}, {1}, {2}} (End)
References
- H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
- A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- P. A. Baikov and S. V. Mikhailov, The {beta}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O(alpha_s^4), J. High Energy Phys. 09 (2022) Art. No. 185. See also arXiv:2206.14063 [hep-ph], 2022.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
- Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See p. 15.
- L. Bracci and L. E. Picasso, A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics, The European Physical Journal Plus, 127 (2012), Article 119. - From _N. J. A. Sloane_, Dec 31 2012
- Emmanuel Briand, Samuel A. Lopes, and Mercedes Rosas, Normally ordered forms of powers of differential operators and their combinatorics, arXiv:1811.00857 [math.CO], 2018.
- C. C. Cadogan, On partly ordered partitions of a positive integer, Fib. Quart., 9 (1971), 329-336.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers, National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956. (Annotated scanned pages from, plus a review)
- Philip Cuthbertson, Fixed hooks in arbitrary columns of partitions, Integers (2025) Vol. 25, Art. No. A28. See p. 3.
- Mario De Salvo, Dario Fasino, Domenico Freni and Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070, Journal of Multiple-Valued Logic & Soft Computing, 2016, Vol. 27, Issue 5/6, pp. 553-572.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat 32(12) (2018), 4177-4194.
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, 7(1) (1998), 15-35.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, Ars Combinatoria, Vol. 65 (2002), 33-37.
- D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, preprint.
- Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
- Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), Article #17.8.5.
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- M. D. Hirschhorn, The number of 1's in the partitions of n, Fib. Quart., 51 (2013), 326-329.
- M. D. Hirschhorn, The number of different parts in the partitions of n, Fib. Quart., 52 (2014), 10-15. See p. 11. - _N. J. A. Sloane_, Mar 25 2014
- Nick Hobson, Solution to puzzle 56: Partition identity
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 113.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 126.
- MathOverflow, Number of branches between two layers of the Young's lattice, Sep 19 2021.
- Mikhailov, S. V. On a realization of beta-expansion in QCD, J. High Energy Phys. 2017, No. 4, Paper No. 169, 16 p. (2017).
- M. M. Mogbonju, O. A. Ojo, and I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order-Preserving Partial One-One Transformation Semigroup, International Journal of Science and Research (IJSR), 3(12) (2014), 711-721.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- F. Ruskey, Combinatorial Object Server.
- Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt, A quantum hardware-induced graph kernel based on Gaussian Boson Sampling, arXiv:1905.12646 [quant-ph], 2019.
- N. J. A. Sloane, Transforms
- I. J. Ugbene, E. O. Eze, and S. O. Makanjuola, On the Number of Conjugacy Classes in the Injective Order-Decreasing Transformation Semigroup, Pacific Journal of Science and Technology, 14(1) (2013), 182-186.
- Ifeanyichukwu Jeff Ugbene, Gatta Naimat Bakare, and Garba Risqot Ibrahim, Conjugacy classes of the order-preserving and order-decreasing partial one-to-one transformation semigroups, Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(2) (2019), 83-88.
- Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
- Eric Weisstein's World of Mathematics, Stanley's Theorem.
Crossrefs
A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.
Programs
-
GAP
List([0..45],n->Sum([0..n],k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
-
Haskell
a000070 = p a028310_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 06 2012
-
Maple
with(combinat): a:=n->add(numbpart(j),j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
-
Mathematica
CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *) Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *) Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *) a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *) Accumulate[PartitionsP[Range[0,49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
-
PARI
x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
-
PARI
a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
-
Python
from itertools import accumulate def A000070iter(n): L = [0]*n; L[0] = 1 def numpart(n): S = 0; J = n-1; k = 2 while 0 <= J: T = L[J] S = S+T if (k//2)%2 else S-T J -= k if (k)%2 else k//2 k += 1 return S for j in range(1, n): L[j] = numpart(j) return accumulate(L) print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
-
Python
# Using function A365676Row. Compare also A365675. from itertools import accumulate def A000070List(size: int) -> list[int]: return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)] print(A000070List(45)) # Peter Luschny, Sep 16 2023
-
Sage
def A000070_list(leng): p = [number_of_partitions(n) for n in range(leng)] return [add(p[:k+1]) for k in range(leng)] A000070_list(45) # Peter Luschny, Sep 15 2014
Formula
Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
Comments