A000213 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.
1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, 85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, 20603361, 37895489, 69700671, 128199521, 235795681, 433695873, 797691075, 1467182629
Offset: 0
Examples
G.f. = 1 + x + x^2 + 3*x^3 + 5*x^4 + 9*x^5+ 17*x^6 + 31*x^7 + 57*x^8 + ...
References
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..3772 (terms 0..200 from T. D. Noe)
- George E. Andrews, Matthew Just, and Greg Simay, Anti-palindromic compositions, arXiv:2102.01613 [math.CO], 2021. Also Fib. Q., 60:2 (2022), 164-176. See Table 1.
- Joerg Arndt, Matters Computational (The Fxtbook), p.312
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- B. G. Baumgart, Letter to the editor Part 1 Part 2 Part 3, Fib. Quart. 2 (1964), 260, 302.
- Martin Burtscher, Igor Szczyrba and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
- Mark Feinberg, Fibonacci-Tribonacci, Fib. Quart. 1(#3) (1963), 71-74.
- Nick Hobson, Python program for this sequence
- Joanna Jaszunska and Jan Okninski, Structure of Chinese algebras, Journal of Algebra, Volume 346, Issue 1, 15 November 2011, Pages 31-81.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- I. Tasoulas, K. Manes, A. Sapounakis, and P. Tsikouras, Chains with Small Intervals in the Lattice of Binary Paths, arXiv:1911.10883 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Path Graph
- Eric Weisstein's World of Mathematics, Triangular Snake Graph
- Eric Weisstein's World of Mathematics, Tribonacci Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
- Index entries for sequences related to Benford's law
Programs
-
GAP
a:=[1,1,1];; for n in [4..45] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 09 2019
-
Haskell
a000213 n = a000213_list !! n a000213_list = 1 : 1 : 1 : zipWith (+) a000213_list (tail $ zipWith (+) a000213_list (tail a000213_list)) -- Reinhard Zumkeller, Apr 07 2012
-
Magma
I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..45]]; // G. C. Greubel, Jun 09 2019
-
Maple
K:=(1-z^2)/(1-z-z^2-z^3): Kser:=series(K, z=0, 45): seq((coeff(Kser, z, n)), n= 0..34); # Zerinvary Lajos, Nov 08 2007 A000213:=(z-1)*(1+z)/(-1+z+z**2+z**3); # Simon Plouffe in his 1992 dissertation
-
Mathematica
LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 45] (* Harvey P. Dale, May 23 2011 *) Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]/11, {n, 0, 45}] (* Eric W. Weisstein, Apr 10 2018 *) CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3), {x, 0, 45}], x] (* Eric W. Weisstein, Apr 10 2018 *)
-
Maxima
a(n):=sum(sum(binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m), i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */
-
PARI
a(n)=tn=[1,1,1;1,0,0;0,1,0]^n;tn[3,1]+tn[3,2]+tn[3,3] \\ Charles R Greathouse IV, Feb 18 2011
-
Python
alst = [1, 1, 1] [alst.append(alst[n-1] + alst[n-2] + alst[n-3]) for n in range(3, 37)] print(alst) # Michael S. Branicky, Sep 21 2021
-
Sage
((1-x^2)/(1-x-x^2-x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
Formula
G.f.: (1-x)*(1+x)/(1-x-x^2-x^3). - Ralf Stephan, Feb 11 2004
G.f.: 1 / (1 - x / (1 - 2*x^2 / (1 + x^2))). - Michael Somos, May 12 2012
a(n) = rightmost term of M^n * [1 1 1], where M is the 3 X 3 matrix [1 1 1 / 1 0 0 / 0 1 0]. M^n * [1 1 1] = [a(n+2) a(n+1) a(n)]. a(n)/a(n-1) tends to the tribonacci constant, 1.839286755...; an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n) = A001590(n+3) - A001590(n+2); a(n+1) - a(n) = 2*A000073(n); a(n) = A000073(n+3) - A000073(n+1). - Reinhard Zumkeller, May 22 2006
a(n) = 2*a(n-1) - a(n-4), n > 3. - Gary Detlefs, Sep 13 2010
a(n) = Sum_{m=0..n/2} Sum_{i=0..m} binomial(n-2*m+1,m-i)*binomial(n-2*m+i, n-2*m). - Vladimir Kruchinin, Dec 17 2011
a(n) = 2*A008937(n-2) + 1 for n > 1. - Reinhard Zumkeller, Apr 07 2012
G.f.: 1+x/(U(0) - x) where U(k) = 1 - x^2/(1 - 1/(1 + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1 + x + x^2/(G(0)-x) where G(k) = 1 - x*(2*k+1)/(1 - 1/(1 + (2*k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 17 2012
G.f.: (1+x)*(1-x)*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2)/(1-x/(x+1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: 1/(1+x-G(0)), where G(k) = 1 - 1/(1 - x/(x - 1/(1 + 1/(1 - x/(x + 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (-1)^n * A180735(-1-n) for all n in Z. - Michael Somos, Aug 15 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+2). - Fabian Pereyra, Nov 21 2024
Comments