cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000213 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, 85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, 20603361, 37895489, 69700671, 128199521, 235795681, 433695873, 797691075, 1467182629
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Number of (n-1)-bit binary sequences with each one adjacent to a zero. - R. H. Hardin, Dec 24 2007
The binomial transform is A099216. The inverse binomial transform is (-1)^n*A124395(n). - R. J. Mathar, Aug 19 2008
Equals INVERT transform of (1, 0, 2, 0, 2, 0, 2, ...). a(6) = 17 = (1, 1, 1, 3, 5, 9) dot (0, 2, 0, 2, 0, 1) = (0 + 2 + 0 + 6 + 0 + 9) = 17. - Gary W. Adamson, Apr 27 2009
From John M. Campbell, May 16 2011: (Start)
Equals the number of tilings of a 2 X n grid using singletons and "S-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {2, 0}, {2, 1}, {3, 1}, {3, 2}, {1, 2}, {1, 1}, {0, 1}}]).
Also equals the number of tilings of a 2 X n grid using singletons and "T-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {3, 0}, {3, 1}, {2, 1}, {2, 2}, {1, 2}, {1, 1}, {0, 1}}]). (End)
Pisano period lengths: 1, 1, 13, 4, 31, 13, 48, 8, 39, 31, 110, 52, 168, 48, 403, 16, 96, 39, 360, 124, ... (differs from A106293). - R. J. Mathar, Aug 10 2012
a(n) is the number of compositions of n with no consecutive 1's. a(4) = 5 because we have: 4, 3+1, 1+3, 2+2, 1+2+1. Cf. A239791, A003242. - Geoffrey Critzer, Mar 27 2014
a(n+2) is the number of words of length n over alphabet {1,2,3} without having {11,12,22,23} as substrings. - Ran Pan, Sep 16 2015
Satisfies Benford's law [see A186190]. - N. J. A. Sloane, Feb 09 2017
a(n) is also the number of dominating sets on the (n-1)-path graph. - Eric W. Weisstein, Mar 31 2017
a(n) is also the number of maximal irredundant sets and minimal dominating sets in the (2n-3)-triangular snake graph. - Eric W. Weisstein, Jun 09 2019
a(n) is also the number of anti-palindromic compositions of n, where a composition (c(1), c(2),..., c(k)) is anti-palindromic if c(i) is not equal to c(k+1-i) whenever 1 <= i <= k/2. For instance, there are a(4) = 5 anti-palindromic compositions of 4: 4, 31, 13, 211, 112. - Jia Huang, Apr 08 2023

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 5*x^4 + 9*x^5+ 17*x^6 + 31*x^7 + 57*x^8 + ...
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..45] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 09 2019
    
  • Haskell
    a000213 n = a000213_list !! n
    a000213_list = 1 : 1 : 1 : zipWith (+) a000213_list
       (tail $ zipWith (+) a000213_list (tail a000213_list))
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..45]]; // G. C. Greubel, Jun 09 2019
    
  • Maple
    K:=(1-z^2)/(1-z-z^2-z^3): Kser:=series(K, z=0, 45): seq((coeff(Kser, z, n)), n= 0..34); # Zerinvary Lajos, Nov 08 2007
    A000213:=(z-1)*(1+z)/(-1+z+z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 45] (* Harvey P. Dale, May 23 2011 *)
    Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]/11, {n, 0, 45}] (* Eric W. Weisstein, Apr 10 2018 *)
    CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3), {x, 0, 45}], x] (* Eric W. Weisstein, Apr 10 2018 *)
  • Maxima
    a(n):=sum(sum(binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m), i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */
    
  • PARI
    a(n)=tn=[1,1,1;1,0,0;0,1,0]^n;tn[3,1]+tn[3,2]+tn[3,3] \\ Charles R Greathouse IV, Feb 18 2011
    
  • Python
    alst = [1, 1, 1]
    [alst.append(alst[n-1] + alst[n-2] + alst[n-3]) for n in range(3, 37)]
    print(alst) # Michael S. Branicky, Sep 21 2021
  • Sage
    ((1-x^2)/(1-x-x^2-x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
    

Formula

G.f.: (1-x)*(1+x)/(1-x-x^2-x^3). - Ralf Stephan, Feb 11 2004
G.f.: 1 / (1 - x / (1 - 2*x^2 / (1 + x^2))). - Michael Somos, May 12 2012
a(n) = rightmost term of M^n * [1 1 1], where M is the 3 X 3 matrix [1 1 1 / 1 0 0 / 0 1 0]. M^n * [1 1 1] = [a(n+2) a(n+1) a(n)]. a(n)/a(n-1) tends to the tribonacci constant, 1.839286755...; an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n) = A001590(n+3) - A001590(n+2); a(n+1) - a(n) = 2*A000073(n); a(n) = A000073(n+3) - A000073(n+1). - Reinhard Zumkeller, May 22 2006
a(n) = A001590(n) + A001590(n+1). - Philippe Deléham, Sep 25 2006
a(n) ~ (F - 1) * T^n, where F = A086254 and T = A058265. - Charles R Greathouse IV, Nov 09 2008
a(n) = 2*a(n-1) - a(n-4), n > 3. - Gary Detlefs, Sep 13 2010
a(n) = Sum_{m=0..n/2} Sum_{i=0..m} binomial(n-2*m+1,m-i)*binomial(n-2*m+i, n-2*m). - Vladimir Kruchinin, Dec 17 2011
a(n) = 2*A008937(n-2) + 1 for n > 1. - Reinhard Zumkeller, Apr 07 2012
G.f.: 1+x/(U(0) - x) where U(k) = 1 - x^2/(1 - 1/(1 + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1 + x + x^2/(G(0)-x) where G(k) = 1 - x*(2*k+1)/(1 - 1/(1 + (2*k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 17 2012
G.f.: (1+x)*(1-x)*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2)/(1-x/(x+1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: 1/(1+x-G(0)), where G(k) = 1 - 1/(1 - x/(x - 1/(1 + 1/(1 - x/(x + 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (-1)^n * A180735(-1-n) for all n in Z. - Michael Somos, Aug 15 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+2). - Fabian Pereyra, Nov 21 2024