A000285 a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620, 180510493, 292072113, 472582606
Offset: 0
Examples
G.f. = 1 + 4*x + 5*x^2 + 9*x^3 + 14*x^4 + 23*x^5 + 37*x^6 + 60*x^7 + ...
References
- Richard E. Merrifield and Howard E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 131.
- Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Ben Adenbaum, Jennifer Elder, Pamela E. Harris, and J. Carlos Martínez Mori, Boolean intervals in the weak Bruhat order of a finite Coxeter group, arXiv:2403.07989 [math.CO], 2024. See pp. 2, 10.
- Brandon Avila and Tanya Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
- Alfred Brousseau, Seeking the lost gold mine or exploring Fibonacci factorizations, Fib. Quart., 3 (1965), 129-130.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 53.
- A. Eswarathasan, On Square Pseudo-Fibonacci Numbers, Fibonacci Quarterly, Vol. 16, No. 4 (1978), pp. 310-314.
- A. Eswarathasan, On Pseudo-Fibonacci Numbers of the Form 2S^2, Where S is an Integer, Fibonacci Quarterly, Vol. 17, No. 2 (1979), pp. 142-147.
- Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
- Tanya Khovanova, Recursive Sequences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+2) +2*F(n) ); # G. C. Greubel, Nov 08 2019
-
Haskell
a000285 n = a000285_list !! n a000285_list = 1 : 4 : zipWith (+) a000285_list (tail a000285_list) -- Reinhard Zumkeller, Apr 28 2011
-
Magma
a0:=1; a1:=4; [GeneralizedFibonacciNumber(a0,a1,n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
-
Maple
with(combinat):a:=n->2*fibonacci(n)+fibonacci(n+2): seq(a(n), n=0..34);
-
Mathematica
LinearRecurrence[{1,1},{1,4},40] (* or *) Table[(3*LucasL[n]- Fibonacci[n])/2,{n,40}] (* Harvey P. Dale, Jul 18 2011 *) a[ n_]:= Fibonacci[n] + LucasL[n+1]; (* Michael Somos, May 28 2014 *)
-
Maxima
a[0]:1$ a[1]:4$ a[n]:=a[n-1]+a[n-2]$ makelist(a[n],n,0,30); /* Martin Ettl, Oct 25 2012 */
-
PARI
Vec((1+3*x)/(1-x-x^2)+O(x^40)) \\ Charles R Greathouse IV, Nov 20 2012
-
Sage
f=fibonacci; [f(n+2) +2*f(n) for n in (0..40)] # G. C. Greubel, Nov 08 2019
Formula
G.f.: (1+3*x)/(1-x-x^2). - Simon Plouffe in his 1992 dissertation
Row sums of A131775 starting (1, 4, 5, 9, 14, 23, ...). - Gary W. Adamson, Jul 14 2007
a(n) = 2*Fibonacci(n) + Fibonacci(n+2). - Zerinvary Lajos, Oct 05 2007
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (3/2)* ((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=5. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 3*Fibonacci(n+2) - 2*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = A104449(n+1). - Michael Somos, Apr 07 2012
From Michael Somos, May 28 2014: (Start)
a(n) = A101220(3, 0, n+1).
a(n) = A109754(3, n+1).
a(k) = A090888(2, k-1), for k > 0.
a(-1 - n) = (-1)^n * A013655(n).
a(n) = Fibonacci(n) + Lucas(n+1), see Mathematica field. (End)
11*Fibonacci(n+1) = a(n+3) - a(n-2) = 3*a(n-1) + 2*a(n). - Manfred Arens and Michel Marcus, Jul 14 2014
a(n) = (9*F(n) + F(n-3))/2. - J. M. Bergot, Jul 15 2017
E.g.f.: (cosh(x/2) + sinh(x/2))*(5*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Dec 31 2024
Comments