A000566 Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2.
0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, 2205, 2356, 2512, 2673, 2839, 3010, 3186, 3367, 3553, 3744, 3940, 4141, 4347, 4558, 4774, 4995, 5221, 5452, 5688
Offset: 0
Examples
G.f. = x + 7*x^2 + 18*x^3 + 34*x^4 + 55*x^5 + 81*x^6 + 112*x^7 + ... - _Michael Somos_, Jan 25 2019
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- Leonard E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- S. Barbero, U. Cerruti, and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7., section 4.4.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 341.
- Bir Kafle, Florian Luca, and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae, pp. 137-145.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- B. Srinivasa Rao, Heptagonal Numbers in the Pell Sequence and Diophantine Equations 2x^2 = y^2(5y - 3)^2 ± 2, Fib. Quarterly, 43 (2005), 194-201.
- B. Srinivasa Rao, Heptagonal numbers in the associated Pell sequence and Diophantine equations x^2(5x - 3)^2 = 8y^2 ± 4, Fib. Quarterly, 43 (2005), 302-306.
- Leo Tavares, Illustration.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a000566 n = n * (5 * (n - 1) + 2) `div` 2 a000566_list = scanl (+) 0 a016861_list -- Reinhard Zumkeller, Jun 16 2013
-
Magma
a000566:=func< n | n*(5*n-3) div 2 >; [ a000566(n): n in [0..50] ];
-
Maple
A000566 := proc(n) n*(5*n-3)/2 ; end proc: seq(A000566(n),n=0..30); # R. J. Mathar, Oct 02 2020
-
Mathematica
Table[n (5n - 3)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 7}, 50] (* Harvey P. Dale, Oct 13 2011 *) Join[{0},Accumulate[Range[1,315,5]]] (* Harvey P. Dale, Mar 26 2016 *) (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[7], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *) PolygonalNumber[7,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)
-
Maxima
makelist(n*(5*n-3)/2, n, 0, 20); /* Martin Ettl, Dec 11 2012 */
-
PARI
a(n) = n * (5*n - 3) / 2
-
Python
# Intended to compute the initial segment of the sequence, not isolated terms. def aList(): x, y = 1, 1 yield 0 while True: yield x x, y = x + y + 5, y + 5 A000566 = aList() print([next(A000566) for i in range(49)]) # Peter Luschny, Aug 04 2019
-
Python
[n*(5*n-3)//2 for n in range(50)] # Gennady Eremin, Mar 24 2022
Formula
G.f.: x*(1 + 4*x)/(1 - x)^3. Simon Plouffe in his 1992 dissertation.
a(n) = C(n, 1) + 5*C(n, 2). - Paul Barry, Jun 10 2003
a(n) = Sum_{k = 1..n} (4*n - 3*k). - Paul Barry, Sep 06 2005
a(n) = n + 5*A000217(n-1) - Floor van Lamoen, Oct 14 2005
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for a(0) = 0, a(1) = 1, a(2) = 7. - Jaume Oliver Lafont, Dec 02 2008
a(n+1) = A153126(n) + n mod 2; a(2*n+1) = A033571(n); a(2*(n+1)) = A153127(n) + 1. - Reinhard Zumkeller, Dec 20 2008
40*a(n)+ 9 = A017354(n-1). - Ken Rosenbaum, Dec 02 2009.
a(n) = 2*a(n-1) - a(n-2) + 5, with a(0) = 0 and a(1) = 1. - Mohamed Bouhamida, May 05 2010
a(n) = a(n-1) + 5*n - 4, with a(0) = 0. - Vincenzo Librandi, Nov 20 2010
a(n) = A130520(5*n). - Philippe Deléham, Mar 26 2013
a(5*a(n) + 11*n + 1) = a(5*a(n) + 11*n) + a(5*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = sqrt(1 - 2/sqrt(5))*Pi/3 + 5*log(5)/6 - sqrt(5)*log((1 + sqrt(5))/2)/3 = 1.32277925312238885674944226131... . See A244639. - Vaclav Kotesovec, Apr 27 2016
E.g.f.: x*(2 + 5*x)*exp(x)/2. - Ilya Gutkovskiy, Aug 27 2016
From Charlie Marion, May 02 2017: (Start)
a(n+m) = a(n) + 5*n*m + a(m);
a(n-m) = a(n) - 5*n*m + a(m) + 3*m;
a(n) - a(m) = (5*(n + m) - 3)*(n - m)/2.
In general, let P(k,n) be the n-th k-gonal number. Then
P(k,n+m) = P(k,n) + (k - 2)*n*m + P(k,m);
P(k,n-m) = P(k,n) - (k - 2)*n*m + P(k,m) + (k - 4)*m;
P(k,n) - P(k,m) = ((k-2)*(n + m) + 4 - k)*(n - m)/2.
(End)
a(n) = A147875(-n) for all n in Z. - Michael Somos, Jan 25 2019
Product_{n>=2} (1 - 1/a(n)) = 5/7. - Amiram Eldar, Jan 21 2021
a(n) + a(n+1) = (2*n+1)^2 + n^2 - 2*n. In general, if we let P(k,n) = the n-th k-gonal number, then P(k^2-k+1,n)+ P(k^2-k+1,n+1) = ((k-1)*n+1)^2 + (k-2)*(n^2-2*n) = ((k-1)*n+1)^2 + (k-2)*A005563(n-2). When k = 2, this formula reduces to the well-known triangular number formula: T(n) + T(n+1) = (n+1)^2. - Charlie Marion, Jul 01 2021
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments