A000629 Number of necklaces of partitions of n+1 labeled beads.
1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, 3245265146, 56183135190, 1053716696762, 21282685940886, 460566381955706, 10631309363962710, 260741534058271802, 6771069326513690646, 185603174638656822266, 5355375592488768406230
Offset: 0
Examples
a(2)=6: the necklace representatives on 1,2,3 are ({123}), ({12},{3}), ({13},{2}), ({23},{1}), ({1},{2},{3}), ({1},{3},{2}) G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ... From _Gus Wiseman_, Feb 01 2019: (Start) The a(3) = 26 ordered set partitions of subsets of {1,2,3} are: {} {{1}} {{2}} {{3}} {{12}} {{13}} {{23}} {{123}} {{1}{2}} {{1}{3}} {{2}{3}} {{1}{23}} {{2}{1}} {{3}{1}} {{3}{2}} {{12}{3}} {{13}{2}} {{2}{13}} {{23}{1}} {{3}{12}} {{1}{2}{3}} {{1}{3}{2}} {{2}{1}{3}} {{2}{3}{1}} {{3}{1}{2}} {{3}{2}{1}} (End)
References
- R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
- N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, 1981, p. 36.
- Eric Hammer, The Calculations of Peirce's 4.453, Transactions of the Charles S. Peirce Society, Vol. 31 (1995), pp. 829-839.
- D. E. Knuth, personal communication.
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 174.
- Charles Sanders Peirce, Collected Papers, eds. C. Hartshorne and P. Weiss, Harvard University Press, Cambridge, Vol. 4, 1933, pp. 364-365. (CP 4.453 in the electronic edition of The Collected Papers of Charles Sanders Peirce.)
- Dawidson Razafimahatolotra, Number of Preorders to Compute Probability of Conflict of an Unstable Effectivity Function, Preprint, Paris School of Economics, University of Paris I, Nov 23 2007.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..424 (terms 0..100 from T. D. Noe)
- R. Austin, R. K. Guy, & R. Nowakowski, Unpublished notes, 1987
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays (2011), arXiv preprint arXiv:1105.3043 [math.CO], 2011. J. Int. Seq. 14 (2011) # 11.9.5.
- Paul Barry, Eulerian-Dowling Polynomials as Moments, Using Riordan Arrays, arXiv:1702.04007 [math.CO], 2017.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Arthur T. Benjamin, Combinatorics and campus security, The UMAP Journal 17.2 (summer 1996), pp. 111-116.
- Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, Combinatorial Identities for Vacillating Tableaux, arXiv:2308.14183 [math.CO], 2023. See pp. 27, 29.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Mircea I. Cirnu, Determinantal formulas for sum of generalized arithmetic-geometric series, Boletin de la Asociacion Matematica Venezolana, Vol. XVIII, No. 1 (2011), p. 13.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- G. H. E. Duchamp, N. Hoang-Nghia, and A. Tanasa, A word Hopf algebra based on the selection/quotient principle, Séminaire Lotharingien de Combinatoire 68 (2013), Article B68c.
- Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019.
- Olivier Golinelli, Remote control system of a binary tree of switches - II. balancing for a perfect binary tree, arXiv:2405.16968 [cs.DM], 2024. See p. 17.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
- Robin Houston, Adam P. Goucher, and Nathaniel Johnston, A New Formula for the Determinant and Bounds on Its Tensor and Waring Ranks, arXiv:2301.06586 [math.CO], 2023.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 99
- H. K. Kim, D. S. Krotov and J. Y. Lee, Matrices uniquely determined by their lonesums, Linear Algebra and its Applications, 438 (2013) no 7, 3107-3123.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Qipeng Kuang, Václav Kůla, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Weighted First Order Model Counting for Two-variable Logic with Axioms on Two Relations, arXiv:2508.11515 [cs.LO], 2025. See pp. 20-21.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Konstantin Nestmann and Carsten Timm, Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots, arXiv:1903.05132 [cond-mat.mes-hall], 2019.
- Aurelian Radoaca, Properties of Multisets Compared to Sets
- J. Randon-Furling and S. Redner, Residence Time Near an Absorbing Set, arXiv:1806.09028 [cond-mat.stat-mech], 2018.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- John K. Sikora, On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles, arXiv:1806.00887 [math.NT], 2018.
- S. L. Snover and N. J. A. Sloane, Correspondence, 1991
- J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928.
- M. Thitsa and W. S. Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012
- Eric Weisstein's World of Mathematics, Geometric Distribution
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind
- Herbert S. Wilf, The Redheffer matrix of a partially ordered set, The Electronic Journal of Combinatorics 11(2) (2004), #R10
- Herbert S. Wilf, The Redheffer matrix of a partially ordered set, arXiv:math/0408263 [math.CO], 2004.
Crossrefs
Programs
-
Maple
spec := [ B, {B=Cycle(Set(Z,card>=1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..20)]; a:=n->add(Stirling2(n+1,k)*(k-1)!,k=1..n+1); # Mike Zabrocki, Feb 05 2005
-
Mathematica
a[ 0 ] = 1; a[ n_ ] := (a[ n ] = 1 + Sum[ Binomial[ n, k ] a[ n-k ], {k, 1, n} ]) Table[ PolyLog[n, 1/2], {n, 0, -18, -1}] (* Robert G. Wilson v, Aug 05 2010 *) a[ n_] := If[ n<0, 0, PolyLog[ -n, 1/2]]; (* Michael Somos, Mar 07 2011 *) Table[Sum[(-1)^(n-k) StirlingS2[n,k]k! 2^k,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Oct 21 2011 *) Join[{1}, Rest[t=30; Range[0, t]! CoefficientList[Series[2/(2 - Exp[x]), {x, 0, t}], x]]] (* Vincenzo Librandi, Jan 02 2016 *)
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff(subst( (1 + y) / (1 - y), y, exp(x + x * O(x^n)) - 1), n))} /* Michael Somos, Mar 04 2004 */
-
PARI
{a(n)=polcoeff(sum(m=0, n, 2^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} \\ Paul D. Hanna, Jul 20 2011
-
Python
from math import comb from functools import lru_cache @lru_cache(maxsize=None) def A000629(n): return 1+sum(comb(n,j)*A000629(j) for j in range(n)) if n else 1 # Chai Wah Wu, Sep 25 2023
Formula
a(n) = 2*A000670(n) - 0^n. - Michael Somos, Jan 08 2011
O.g.f.: Sum_{n>=0} 2^n*n!*x^n / Product_{k=0..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
E.g.f.: exp(x) / (2 - exp(x)) = d/dx log(1 / (2 - exp(x))).
a(n) = Sum_{k>=1} k^n/2^k.
a(n) = 1 + Sum_{j=0..n-1} C(n, j)*a(j).
a(n) = round(n!/log(2)^(n+1)) (just for n <= 15). - Henry Bottomley, Jul 04 2000
a(n) is asymptotic to n!/log(2)^(n+1). - Benoit Cloitre, Oct 20 2002
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*k!*2^k. - Vladeta Jovovic, Sep 29 2003
a(n) = Sum_{k=1..n} A008292(n, k)*2^k; A008292: triangle of Eulerian numbers. - Philippe Deléham, Jun 05 2004
a(1) = 1, a(n) = 2*Sum_{k=1..n-1} k!*A008277(n-1, k) for n>1 or a(n) = Sum_{k=1..n} (k-1)!*A008277(n, k). - Mike Zabrocki, Feb 05 2005
a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*k!. - Paul Barry, Apr 20 2005
A000629 = binomial transform of this sequence. a(n) = sum of terms in n-th row of A028246. - Gary W. Adamson, May 30 2005
a(n) = 2*(-1)^n * n!*Laguerre(n,P((.),2)), umbrally, where P(j,t) are the polynomials in A131758. - Tom Copeland, Sep 28 2007
a(n) = 2^n*A(n,1/2); A(n,x) the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n) = (-1)^n*b(n), where b(n) = -2*Sum_{k=0..n-1} binomial(n,k)*b(k), b(0)=1. - Vladimir Kruchinin, Jan 29 2011
Row sums of A028246. Let f(x) = x+x^2. Then a(n+1) = (f(x)*d/dx)^n f(x) evaluated at x = 1. - Peter Bala, Oct 06 2011
O.g.f.: 1+2*x/(U(0)-2*x) where U(k)=1+3*x+3*x*k-2*x*(k+2)*(1+x+x*k)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2011
E.g.f.: exp(x)/(2 - exp(x)) = 2/(2-Q(0))-1; Q(k)=1+x/(2*k+1-x*(2*k+1)/(x+(2*k+2)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2011
G.f.: 1 / (1 - 2*x / (1 - 1*x / (1 - 4*x / (1 - 2*x / (1 - 6*x / ...))))). - Michael Somos, Apr 27 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+2)/( 1 - x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
E.g.f.: 1/E(0) where E(k) = 1 - x/(k+1)/(1 - 1/(1 + 1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 27 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)^2/(2*x^2*(k+1)^2 - (1 - 2*x - 3*x*k)*(1 - 5*x - 3*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
a(n) = log(2)*integral_{x>=0} (ceiling(x))^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
Extensions
a(19) from Michael Somos, Mar 07 2011
Comments