A343843
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*A000831(k).
Original entry on oeis.org
1, -1, 1, -9, 33, -241, 1761, -15929, 161473, -1853281, 23584321, -330371049, 5047404513, -83546832721, 1489242229281, -28442492633369, 579425286625153, -12541705195066561, 287434687338368641, -6953491183101074889, 177069197398959999393, -4734481603905334522801
Offset: 0
-
a := n -> add((-1)^k*binomial(n, k)*A000831(k), k=0..n):
seq(a(n), n = 0..21);
-
Table[-1 + Sum[(-1)^k * Binomial[n, k] * 4^k * Abs[EulerE[k,1/2] + EulerE[k,1]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 06 2021 *)
A000828
E.g.f. cos(x)/(cos(x) - sin(x)).
Original entry on oeis.org
1, 1, 2, 8, 40, 256, 1952, 17408, 177280, 2031616, 25866752, 362283008, 5535262720, 91620376576, 1633165156352, 31191159799808, 635421069967360, 13753735117275136, 315212388819402752, 7625476699018231808
Offset: 0
a(3) = 8: The eight snakes of type S(3;0,0) are
0 1 -2 3 0, 0 1 -3 2 0, 0 2 1 3 0, 0 2 -1 3 0, 0 2 -3 1 0,
0 3 1 2 0, 0 3 -1 2 0, 0 3 -2 1 0.
1 + x + 2*x^2 + 8*x^3 + 40*x^4 + 256*x^5 + 1952*x^6 + 17408*x^7 + ...
a(3) = 8: The eight increasing 0-1-2 trees on 3 vertices are
..1o (x2 colors)......1o (x2 colors)......1o (x2 colors).....
...|................./.\................./.\.................
..2o (x2 colors)...2o...o3.............3o...o2...............
...|
..3o
Totals.......................................................
...4......+...........2.........+.........2....=...8.........
- R. J. Mathar, Table of n, a(n) for n = 0..200
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.
- Wiktor Ejsmont and Franz Lehner, The Free Tangent Law, arXiv:2004.02679 [math.OA], 2020.
- M. Josuat-Verges, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
-
A000828 := n -> (-1)^((n-1)*n/2)*4^n*(Euler(n,1/2)+Euler(n,1))/2: # Peter Luschny, Nov 25 2010
-
a[n_] := (-1)^((n-1)*n/2)*4^n*(EulerE[n, 1/2] + EulerE[n, 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 22 2012, after Peter Luschny *)
-
a(n):=sum(if evenp(n+k) then (-1)^((n+k)/2)*sum(j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n); /* Vladimir Kruchinin, Aug 18 2010 */
-
my(x='x + O('x^30)); Vec(serlaplace(cos(x)/(cos(x)-sin(x)))) \\ Michel Marcus, Nov 21 2020
A002436
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n)/(2*n)! = sec(2*x).
Original entry on oeis.org
1, 4, 80, 3904, 354560, 51733504, 11070525440, 3266330312704, 1270842139934720, 630424777638805504, 388362339077351014400, 290870261262635870715904, 260290690801376575335956480, 274278793184290987427604987904, 336150887870579862992197737512960
Offset: 0
G.f. = 1 + 4*x + 80*x^2 + 3904*x^3 + 354560*x^4 + 51733504*x^5 + 11070525440*x^6 + ...
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
- J. W. L. Glaisher, On the last two figures in certain coefficients analogous to the Eulerian numbers, Quart. J. Pure Appl. Math., 44 (1913), 105-112.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
(-1)^n*a(n) give the alternating row sums of
A060187(2*n), n >= 0. The alternating sums for odd numbered rows vanish. -
Wolfdieter Lang, Jul 12 2017
-
m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1+Tan(x))/(1-Tan(x)) )); [Factorial(n-1)*b[n]: n in [1..m by 2]]; // Vincenzo Librandi, May 30 2019
-
A := n -> (-4)^n*euler(2*n); # (Then A(n) = a(n+1) for n >= 0.) # Peter Luschny, Jan 27 2009
-
Rest@ Union[ Range[0, 24]! CoefficientList[ Series[ Sec[ 2x], {x, 0, 24}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
a[ n_] := If[ n < 0, 0, 2 (-16)^n LerchPhi[ -1, -2 n, 1/2]]; (* Michael Somos, Oct 14 2014 *)
With[{nn=30},Take[CoefficientList[Series[Sec[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 06 2018 *)
-
{a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / cos( 2*x + x * O(x^m)), m))}; /* Michael Somos, Apr 16 2011 */
-
@CachedFunction
def sp(n,x) :
if n == 0 : return 1
return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])
A002436 = lambda n : abs(sp(2*(n-1),x))
[A002436(n) for n in (1..15)] # Peter Luschny, Jul 30 2012
A155100
Triangle read by rows: coefficients in polynomials P_n(u) arising from the expansion of D^(n-1) (tan x) in increasing powers of tan x for n>=1 and 1 for n=0.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 2, 0, 8, 0, 6, 0, 16, 0, 40, 0, 24, 16, 0, 136, 0, 240, 0, 120, 0, 272, 0, 1232, 0, 1680, 0, 720, 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 7936, 0, 176896, 0, 814080, 0, 1491840
Offset: 0
The polynomials P_{-1}(u) through P_6(u) with exponents in decreasing order:
1
u
u^2 + 1
2*u^3 + 2*u
6*u^4 + 8*u^2 + 2
24*u^5 + 40*u^3 + 16*u
120*u^6 + 240*u^4 + 136*u^2 + 16
720*u^7 + 1680*u^5 + 1232*u^3 + 272*u
...
Triangle begins:
1
0, 1
1, 0, 1
0, 2, 0, 2
2, 0, 8, 0, 6
0, 16, 0, 40, 0, 24
16, 0, 136, 0, 240, 0, 120
0, 272, 0, 1232, 0, 1680, 0, 720
272, 0, 3968, 0, 12096, 0, 13440, 0, 5040
0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320
7936, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880
0, 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305600, 0, 3628800
...
From _Peter Bala_, Feb 07 2011: (Start)
Examples of sign change statistic sc on snakes of type S(n):
Snakes # sign changes sc t^sc
=========== ================= ====
n=1:
-2 1 -2 ........... 2 ........ t^2
-2 -1 -2 ........... 0 ........ 1
yields P_2(t) = 1 + t^2;
n=2:
-3 1 -2 3 ........ 3 ........ t^3
-3 2 1 3 ........ 1 ........ t
-3 2 -1 3 ........ 3 ........ t^3
-3 -1 -2 3 ........ 1 ........ t
yields P_3(t) = 2*t + 2*t^3. (End)
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
- G. C. Greubel, Rows n = 0..101 of triangle, flattened
- K. Boyadzhiev, Derivative Polynomials for tanh, tan, sech and sec in Explicit Form, arXiv:0903.0117 [math.CA], 2009-2010.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Gordon Haigh, A "natural" approach to Pick's theorem, Math. Gaz. 64 (1980), no. 429, 173-180.
- Michael E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly, 102 (1995), 23-30.
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p.
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- Shi-Mei Ma, Qi Fang, Toufik Mansour, and Yeong-Nan Yeh, Alternating Eulerian polynomials and left peak polynomials, arXiv:2104.09374 [math.CO], 2021.
Highest order coefficients give factorials
A000142. Constant terms give tangent numbers
A000182. Other coefficients:
A002301.
-
P:=proc(n) option remember;
if n=-1 then RETURN(1); elif n=0 then RETURN(u); else RETURN(expand((u^2+1)*diff(P(n-1),u))); fi;
end;
for n from -1 to 12 do t1:=series(P(n),u,20); lprint(seriestolist(t1)); od:
# Alternatively:
with(PolynomialTools): seq(print(CoefficientList(`if`(i=0,1,D@@(i-1))(tan),tan)), i=0..7); # Peter Luschny, May 19 2015
-
p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1 + u^2] // Expand; p[-1, u_] = 1; Flatten[ Table[ CoefficientList[ p[n, u], u], {n, -1, 9}]] (* Jean-François Alcover, Jun 28 2012 *)
T[ n_, k_] := Which[n<0, Boole[n==-1 && k==0], n==0, Boole[k==1], True, (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 09 2024 *)
-
{T(n, k) = if(n<0, n==-1 && k==0, n==0, k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 09 2024 */
A258880
E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx.
Original entry on oeis.org
1, 6, 540, 184680, 157600080, 270419925600, 816984611467200, 3971317527112003200, 29097143353353192480000, 305823675529741700675520000, 4435486895868663971869188480000, 86036822683997062842122964537600000, 2175352015640142857526698650779456000000
Offset: 0
E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +...
where Series_Reversion(A(x)) = x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +...
-
terms = 13;
A[_] = 0;
Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}];
DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* Jean-François Alcover, Jul 25 2018 *)
-
{a(n) = local(A=x); A = serreverse( sum(m=0,n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A,3*n+1)}
for(n=0,20,print1(a(n),", "))
-
/* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */
{a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A,3*n+1)}
for(n=0,20,print1(a(n),", "))
A258901
E.g.f. satisfies: A(x) = Integral 1 + A(x)^4 dx.
Original entry on oeis.org
1, 24, 32256, 285272064, 8967114326016, 735868743566229504, 130778914961055994085376, 44390350317502907443360825344, 26290393222157669992962395876622336, 25377887922329300948014930852183837507584, 37855568618678541873143615775486954119570128896
Offset: 0
E.g.f.: A(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! + 735868743566229504*x^21/21! +...
where Series_Reversion(A(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 +...
Also, A(x) = S(x)/C(x) where
S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! - 8310698364852576*x^21/21! +...+ A258900(n)*x^(4*n+1)/(4*n+1)! +...
C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! - 8310698364852576*x^20/20! +...+ A258900(n)*x^(4*n)/(4*n)! +...
such that C(x)^4 + S(x)^4 = 1.
-
nmax=20; Table[CoefficientList[InverseSeries[Series[Integrate[1/(1+x^4),x],{x,0,4*nmax+1}],x],x][[4*n-2]] * (4*n-3)!, {n,1,nmax+1}] (* Vaclav Kotesovec, Jun 18 2015 *)
-
/* E.g.f. Series_Reversion( Integral 1/(1+x^4) dx ): */
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^4 + O(x^(4*n+2))) ) ); (4*n+1)!*polcoeff(A,4*n+1)}
for(n=0,20,print1(a(n),", "))
-
/* E.g.f. A(x) = Integral 1 + A(x)^4 dx.: */
{a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^4 + O(x^(4*n+2)) )); (4*n+1)!*polcoeff(A,4*n+1)}
for(n=0,20,print1(a(n),", "))
A258969
E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.
Original entry on oeis.org
1, 2, 6, 42, 390, 4698, 69174, 1203498, 24163110, 549811962, 13982486166, 393026414922, 12099527531910, 404881353252378, 14632253175107574, 567974815524008298, 23567351945550373350, 1040985881615266375482, 48767788927611416600406, 2415210691383917131432842
Offset: 0
A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 390*x^4/4! + 4698*x^5/5! + ...
A'(x) = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
1 + A(x)^3 = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
-
nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^3-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
-
{a(n) = local(A=1); A = 1 + serreverse( intformal( 1/((2+x)*(1+x+x^2) +x*O(x^n)) )); n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Jun 16 2015
A185356
Triangle read by rows: number of type B alternating permutations according to their last value.
Original entry on oeis.org
0, 1, 0, 1, 0, 1, 0, 1, 2, 4, 4, 3, 0, 3, 2, 0, 0, 4, 8, 11, 0, 11, 14, 16, 16, 80, 80, 76, 68, 57, 0, 57, 46, 32, 16, 0, 0, 80, 160, 236, 304, 361, 0, 361, 418, 464, 496, 512, 512, 3904, 3904, 3824, 3664, 3428, 3124, 2763, 0, 2763, 2402, 1984, 1520, 1024, 512, 0
Offset: 0
Triangle begins:
0
1 0 1
0 1 0 1 2
4 4 3 0 3 2 0
0 4 8 11 0 11 14 16 16
80 80 76 68 57 0 57 46 32 16 0
0 80 160 236 304 361 0 361 418 464 496 512 512
Cf.
A001586 for the middle coefficients.
-
T(n,k) = {if ((k==0), return(0)); if (n==1, if (abs(k)==1, return(1))); if (n%2, if (k<0, sum(j=k+1, n-1, T(n-1,j)), sum(j=k, n-1, T(n-1,j))), if (k<0, sum(j=-n+1, k, T(n-1,j)), sum(j=-n+1, k-1, T(n-1,j))));}
tabf(nn) = {for (n=0, nn, for (k=-n, n, print1(T(n, k), ", ");); print;);} \\ Michel Marcus, Jun 03 2020
A258994
E.g.f.: A'(x) = 1 + A(x)^6, with A(0)=1.
Original entry on oeis.org
1, 2, 12, 192, 4272, 124992, 4531392, 195869952, 9832326912, 562125837312, 36056880110592, 2564230500421632, 200237330428342272, 17032391106795159552, 1567547894591436275712, 155196096043697480466432, 16447362605632117421309952, 1857733260790463501532659712
Offset: 0
A(x) = 1 + 2*x + 12*x^2/2! + 192*x^3/3! + 4272*x^4/4! + 124992*x^5/5! + ...
A'(x) = 2 + 12*x + 96*x^2 + 712*x^3 + 5208*x^4 + 188808*x^5/5 + ...
1 + A(x)^6 = 2 + 12*x + 96*x^2 + 712*x^3 + 5208*x^4 + 188808*x^5/5 + ...
-
nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k,{k,0,nmax+1}]; Table[Subscript[a,k]*k!,{k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^6-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
-
{a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^6 +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
A373432
Triangle read by rows. Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the Pascal polynomials and EZ the zig-zag Eulerian polynomials A205497.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 19, 26, 19, 7, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1, 1, 33, 312, 1453, 4023, 7218, 8736, 7218, 4023, 1453, 312, 33, 1, 1, 54, 730, 4639, 17316, 42142, 70593, 83610, 70593, 42142, 17316, 4639, 730, 54, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [1, 4, 6, 4, 1]
[4] [1, 7, 19, 26, 19, 7, 1]
[5] [1, 12, 52, 116, 150, 116, 52, 12, 1]
[6] [1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1]
-
EZP := proc(P, len) local R, EZ, EP, EZP, CL, n;
R := proc(n) option remember; local F; if n = 0 then 1/(1-q*x) else F := R(n-1);
simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1-x)^(n+1))/x^2)):
EP := (n, x) -> local k; simplify(add(P(n, k)*x^k, k = 0..n)):
EZP := (n, x) -> expand(EZ(n, x) * EP(n, x)):
CL := p -> PolynomialTools:-CoefficientList(p, x);
seq(CL(EZP(n, x)), n = 0..len); ListTools:-Flatten([%]) end:
EZP(binomial, 8);
Showing 1-10 of 21 results.
Comments