cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A343843 a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*A000831(k).

Original entry on oeis.org

1, -1, 1, -9, 33, -241, 1761, -15929, 161473, -1853281, 23584321, -330371049, 5047404513, -83546832721, 1489242229281, -28442492633369, 579425286625153, -12541705195066561, 287434687338368641, -6953491183101074889, 177069197398959999393, -4734481603905334522801
Offset: 0

Views

Author

Peter Luschny, May 06 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^k*binomial(n, k)*A000831(k), k=0..n):
    seq(a(n), n = 0..21);
  • Mathematica
    Table[-1 + Sum[(-1)^k * Binomial[n, k] * 4^k * Abs[EulerE[k,1/2] + EulerE[k,1]], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, May 06 2021 *)

Formula

a(n) = (-2)^n*Sum_{k=0..n} A109449(n, k)*(-1/2)^k.
From Vaclav Kotesovec, May 06 2021: (Start)
a(n) ~ (-1)^n * exp(-Pi/4) * 4^(n+1) * n! / Pi^(n+1).
E.g.f.: exp(x)*(1 - tan(x))/(1 + tan(x)). (End)

A000828 E.g.f. cos(x)/(cos(x) - sin(x)).

Original entry on oeis.org

1, 1, 2, 8, 40, 256, 1952, 17408, 177280, 2031616, 25866752, 362283008, 5535262720, 91620376576, 1633165156352, 31191159799808, 635421069967360, 13753735117275136, 315212388819402752, 7625476699018231808
Offset: 0

Views

Author

Keywords

Comments

For a refinement of these numbers see A185896.
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...|x_n|} = {1,2...,n}. Let x_1,...,x_n be a signed permutation. Then we say 0,x_1,...,x_n,0 is a snake of type S(n;0,0) when 0 < x_1 > x_2 < ... 0. For example, 0 4 -3 -1 -2 0 is a snake of type S(4;0,0). Then a(n) equals the cardinality of S(n;0,0) [Verges]. An example is given below. - Peter Bala, Sep 02 2011
Original name was: E.g.f. cos(x)*(cos(x)+sin(x)) /cos(2*x). - Arkadiusz Wesolowski, Jul 25 2012
Number of plane (that is, ordered) increasing 0-1-2 trees on n vertices where the vertices of outdegree 1 or 2 come in two colors. An example is given below. - Peter Bala, Oct 10 2012

Examples

			a(3) = 8: The eight snakes of type S(3;0,0) are
0 1 -2 3 0, 0 1 -3 2 0, 0 2 1 3 0, 0 2 -1 3 0, 0 2 -3 1 0,
0 3 1 2 0, 0 3 -1 2 0, 0 3 -2 1 0.
1 + x + 2*x^2 + 8*x^3 + 40*x^4 + 256*x^5 + 1952*x^6 + 17408*x^7 + ...
a(3) = 8: The eight increasing 0-1-2 trees on 3 vertices are
..1o (x2 colors)......1o (x2 colors)......1o (x2 colors).....
...|................./.\................./.\.................
..2o (x2 colors)...2o...o3.............3o...o2...............
...|
..3o
Totals.......................................................
...4......+...........2.........+.........2....=...8.........
		

Crossrefs

Programs

  • Maple
    A000828 := n -> (-1)^((n-1)*n/2)*4^n*(Euler(n,1/2)+Euler(n,1))/2: # Peter Luschny, Nov 25 2010
  • Mathematica
    a[n_] := (-1)^((n-1)*n/2)*4^n*(EulerE[n, 1/2] + EulerE[n, 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 22 2012, after Peter Luschny *)
  • Maxima
    a(n):=sum(if evenp(n+k) then (-1)^((n+k)/2)*sum(j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n); /* Vladimir Kruchinin, Aug 18 2010 */
    
  • PARI
    my(x='x + O('x^30)); Vec(serlaplace(cos(x)/(cos(x)-sin(x)))) \\ Michel Marcus, Nov 21 2020

Formula

E.g.f.: 1/(1- tan(x)). - Emeric Deutsch, Sep 10 2001
a(n) = A000831(n)/2 for n>0. - Peter Luschny, Nov 25 2010
a(n) = Sum_{k=1..n, n+k is even} (-1)^((n+k)/2)*Sum_{j=k..n} j!/n!*Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1), n>0. - Vladimir Kruchinin, Aug 18 2010
a(n) = (-1)^((n^2-n)/2)*4^n*(E_{n}(1/2)+E_{n}(1))/2 for n >= 0, where E_{n}(x) is an Euler polynomial. - Peter Luschny, Nov 25 2010
From Peter Bala, Sep 02 2011: (Start)
a(n) = (2*i)^(n-1)*Sum_{k = 1..n} (-1)^(n-k)*k!* Stirling2(n,k) * ((1-i)/2)^(k-1), where i = sqrt(-1).
a(n) = 2^(n-1)*A000111(n) for n >= 1.
Let f(x) = 1+x^2 and define the effect of the operator D on a function g(x) by D(g(x)) = d/dx(f(x)*g(x)). Then for n >= 0, a(n+1) = D^n(1) evaluated at x = 1. (End)
From Sergei N. Gladkovskii, Dec 09 2011 - Dec 23 2013: (Start) Continued fractions:
E.g.f.: 1 + x/(G(0)-x); G(k) = 2*k + 1 - (x^2)/G(k+1).
E.g.f.: 1 + x/(U(0)-2*x) where U(k) = 4*k+1 + x/(1+x/(4*k+3 - x/(1- x/U(k+1)))).
E.g.f.: 1 + x/(U(0)-x) where U(k) = 2*k+1 - x^2/U(k+1).
G.f.: 1 + x/G(0) where G(k) = 1 - x*(2*k+2) - 2*x^2*(k+1)*(k+2)/G(k+1).
E.g.f.: 1 + x/T(0) where T(k) = 4*k+1 - x/(1 - x/(4*k+3 + x/(1 + x/T(k+1)))).
G.f.: 1 + x/Q(0) where Q(k) = 1 - 2*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/(1 - 2*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1)).
G.f.: 1 + x/(1-2*x)*T(0) where T(k) = 1 - 2*x^2*(k+1)*(k+2)/( 2*x^2*(k+1)*(k+2) - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1)).
E.g.f.: T(0) where T(k) = 1 + x/(4*k+1 - x/(1 - x/( 4*k+3 + x/T(k+1)))). (End)
G.f.: 1 /(1 - 1*x /(1 - 1*x /(1 - 4*x /(1 - 2*6*x^2 /(1 - 6*x /(1 - 4*x /(1 - 4*x /(1 - 10*x /(1 - 5*12*x^2 /(1 - 12*x / ...)))))))))). - Michael Somos, May 12 2012
a(n) ~ n! * 2^(2*n+1)/Pi^(n+1). - Vaclav Kotesovec, Jun 21 2013
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1). - Ilya Gutkovskiy, Nov 21 2020
From Peter Bala, Dec 04 2021: (Start)
F(x) = exp(2*x)*(exp(2*x) - 1)/(exp(4*x) + 1) = x + 2*x^2/2! - 8*x^3/3! - 40*x^4/4! + 256*x^5/5! + 1952*x^6/6! - - + + ... is the e.g.f. for the sequence [1, 2, -8, -40, 256, 1952, ...], a signed version of this sequence without the first term.
Let G(x) = x + 2*x^2 - 8*x^3 - 40*x^4 + 256*x^5 + 1952*x^6 - - + + ... be the corresponding o.g.f. We have the continued fraction representation G(x) = x/(1 - 2*x + 12*x^2/(1 + 20*x^2/(1 - 2*x + 56*x^2/(1 + 72*x^2/(1 - 2*x + ... + 4*n*(4*n-1)*x^2/(1 + 4*n*(4*n+1)*x^2/(1 - 2*x + ... ))))))).
The inverse binomial transform 1/(1 + x)*G(x/(1 + x)) = x - 11*x^3 + 361*x^5 - 24611*x^7 + - ... is a g.f. for a signed and aerated version of A000464. (End)

Extensions

Name changed by Arkadiusz Wesolowski, Jul 25 2012

A002436 E.g.f.: Sum_{n >= 0} a(n)*x^(2*n)/(2*n)! = sec(2*x).

Original entry on oeis.org

1, 4, 80, 3904, 354560, 51733504, 11070525440, 3266330312704, 1270842139934720, 630424777638805504, 388362339077351014400, 290870261262635870715904, 260290690801376575335956480, 274278793184290987427604987904, 336150887870579862992197737512960
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 4*x + 80*x^2 + 3904*x^3 + 354560*x^4 + 51733504*x^5 + 11070525440*x^6 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75.
  • J. W. L. Glaisher, On the last two figures in certain coefficients analogous to the Eulerian numbers, Quart. J. Pure Appl. Math., 44 (1913), 105-112.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(-1)^n*a(n) give the alternating row sums of A060187(2*n), n >= 0. The alternating sums for odd numbered rows vanish. - Wolfdieter Lang, Jul 12 2017

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1+Tan(x))/(1-Tan(x)) )); [Factorial(n-1)*b[n]: n in [1..m by 2]]; // Vincenzo Librandi, May 30 2019
  • Maple
    A := n -> (-4)^n*euler(2*n); # (Then A(n) = a(n+1) for n >= 0.) # Peter Luschny, Jan 27 2009
  • Mathematica
    Rest@ Union[ Range[0, 24]! CoefficientList[ Series[ Sec[ 2x], {x, 0, 24}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_] :=  If[ n < 0, 0, 2 (-16)^n LerchPhi[ -1, -2 n, 1/2]]; (* Michael Somos, Oct 14 2014 *)
    With[{nn=30},Take[CoefficientList[Series[Sec[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    {a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / cos( 2*x + x * O(x^m)), m))}; /* Michael Somos, Apr 16 2011 */
    
  • Sage
    @CachedFunction
    def sp(n,x) :
        if n == 0 : return 1
        return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])
    A002436 = lambda n : abs(sp(2*(n-1),x))
    [A002436(n) for n in (1..15)]   # Peter Luschny, Jul 30 2012
    

Formula

a(n) = A000831(2*n) = 4^n * A000364(n). a(n) = 2 * A000816(n) except n=0. - Michael Somos, Apr 26 2011
E.g.f.: sec(2*x) = 1 + 2*(x^2)/G(0); G(k) = (k+1)*(2*k+1) - 2*(x^2) + (x^2)*(2*k+1)*(2*k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 01 2011
E.g.f.: sec(2*x) = 1/cos(2*x) = 1/(cos(x)^2 - sin(x)^2). - Arkadiusz Wesolowski, Jul 25 2012
From Sergei N. Gladkovskii, Oct 23 2012 (Start)
G.f.: 1/U(0) where U(k) = 1 - 2*(4*k+1)*(4*k+2)*x/(1 - 2*(4*k+3)*(4*k+4)*x/U(k+1)); (continued fraction, 2-step).
E.g.f.: 1/S(0) where S(k) = 1 - 2*x^2/((4*k+1)*(2*k+1) - x^2*(4*k+1)*(2*k+1)/(x^2 - (4*k+3)*(k+1)/S(k+1))); (continued fraction, 3rd kind, 3-step). (End)
G.f.: 1/U(0) where U(k) = 1 - (4*k+2)*(4*k+2)*x^2/(1 - (4*k+4)*(4*k+4)*x^2/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Nov 06 2012
G.f.: 1/G(0) where G(k) = 1 - 4*x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 12 2013
a(n+1) = | 2*16^n*lerchphi(-1, -2*n, 1/2) |, n>=0. - Peter Luschny, Apr 27 2013
G.f.: Q(0), where Q(k) = 1 - x*(2*k+2)^2/( x*(2*k+2)^2 - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 10 2013
E.g.f.: sec(2*x) = 1/cos(2*x) = 1 + 2*x^2/(1-2*x^2)*T(0), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + ((k+1)*(2*k+1) - 2*x^2)*((k+2)*(2*k+3) - 2*x^2)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/4) - Zeta(-2*n, 3/4)), where Zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015

Extensions

More terms from Michael Somos, Jun 21 2002

A155100 Triangle read by rows: coefficients in polynomials P_n(u) arising from the expansion of D^(n-1) (tan x) in increasing powers of tan x for n>=1 and 1 for n=0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 2, 0, 8, 0, 6, 0, 16, 0, 40, 0, 24, 16, 0, 136, 0, 240, 0, 120, 0, 272, 0, 1232, 0, 1680, 0, 720, 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 7936, 0, 176896, 0, 814080, 0, 1491840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2009

Keywords

Comments

The definition is d^(n-1) tan x / dx^n = P_n(tan x) for n>=1 and 1 for n=0.
Interpolates between factorials and tangent numbers.
From Peter Bala, Mar 02 2011: (Start)
Companion triangles are A104035 and A185896.
A combinatorial interpretation for the polynomial P_n(t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}.
They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation and put x_0 = -(n+1) and x_(n+1) = (-1)^n*(n+1). Then x_0,x_1,...,x_n,x_(n+1) is a snake of type S(n) when x_0 < x_1 > x_2 < ... x_(n+1). For example, -5 4 -3 -1 -2 5 is a snake of type S(4).
Let sc be the number of sign changes through a snake sc = #{i, 0 <= i <= n, x_i*x_(i+1) < 0}. For example, the snake -5 4 -3 -1 -2 5 has sc = 3.
The polynomial P_(n+1)(t) is the generating function for the sign change statistic on snakes of type S(n): P_(n+1)(t) = sum {snakes in S(n)} t^sc.
See the example section below for the cases n=1 and n=2.
(End)
Equals A107729 when the first column is removed. - Georg Fischer, Jul 26 2023

Examples

			The polynomials P_{-1}(u) through P_6(u) with exponents in decreasing order:
      1
      u
      u^2 +    1
    2*u^3 +    2*u
    6*u^4 +    8*u^2 +    2
   24*u^5 +   40*u^3 +   16*u
  120*u^6 +  240*u^4 +  136*u^2 +  16
  720*u^7 + 1680*u^5 + 1232*u^3 + 272*u
  ...
Triangle begins:
  1
  0, 1
  1, 0, 1
  0, 2, 0, 2
  2, 0, 8, 0, 6
  0, 16, 0, 40, 0, 24
  16, 0, 136, 0, 240, 0, 120
  0, 272, 0, 1232, 0, 1680, 0, 720
  272, 0, 3968, 0, 12096, 0, 13440, 0, 5040
  0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320
  7936, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880
  0, 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305600, 0, 3628800
  ...
From _Peter Bala_, Feb 07 2011: (Start)
Examples of sign change statistic sc on snakes of type S(n):
    Snakes     # sign changes sc  t^sc
  ===========  =================  ====
n=1:
  -2  1 -2 ........... 2 ........ t^2
  -2 -1 -2 ........... 0 ........ 1
                  yields P_2(t) = 1 + t^2;
n=2:
  -3  1 -2  3 ........ 3 ........ t^3
  -3  2  1  3 ........ 1 ........ t
  -3  2 -1  3 ........ 3 ........ t^3
  -3 -1 -2  3 ........ 1 ........ t
                  yields P_3(t) = 2*t + 2*t^3. (End)
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.

Crossrefs

For other versions of this triangle see A008293, A101343.
A104035 is a companion triangle.
Highest order coefficients give factorials A000142. Constant terms give tangent numbers A000182. Other coefficients: A002301.
Setting u=1 in P_n gives A000831, u=2 gives A156073, u=3 gives A156075, u=4 gives A156076, u=1/2 gives A156102.
Setting u=sqrt(2) in P_n gives A156108 and A156122; setting u=sqrt(3) gives A156103 and A000436.

Programs

  • Maple
    P:=proc(n) option remember;
    if n=-1 then RETURN(1); elif n=0 then RETURN(u); else RETURN(expand((u^2+1)*diff(P(n-1),u))); fi;
    end;
    for n from -1 to 12 do t1:=series(P(n),u,20); lprint(seriestolist(t1)); od:
    # Alternatively:
    with(PolynomialTools): seq(print(CoefficientList(`if`(i=0,1,D@@(i-1))(tan),tan)), i=0..7); # Peter Luschny, May 19 2015
  • Mathematica
    p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1 + u^2] // Expand; p[-1, u_] = 1; Flatten[ Table[ CoefficientList[ p[n, u], u], {n, -1, 9}]] (* Jean-François Alcover, Jun 28 2012 *)
    T[ n_, k_] := Which[n<0, Boole[n==-1 && k==0], n==0, Boole[k==1], True, (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 09 2024 *)
  • PARI
    {T(n, k) = if(n<0, n==-1 && k==0, n==0, k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 09 2024 */

Formula

If the polynomials are denoted by P_n(u), we have the recurrence P_{-1}=1, P_0 = u, P_n = (u^2+1)*dP_{n-1}/du.
G.f.: Sum_{n >= 0} P_n(u) t^n/n! = (sin t + u*cos t)/(cos t - u sin t). [Hoffman]
From Peter Bala, Feb 07 2011: (Start)
RELATION WITH BERNOULLI NUMBERS A000367 AND A002445
Put T(n,t) = P_n(i*t), where i = sqrt(-1). We have the definite integral evaluation, valid when both m and n are >=1 and m+n >= 4:
int( T(m,t)*T(n,t)/(1-t^2), t = -1..1) = (-1)^((m-n)/2)*2^(m+n-1)*Bernoulli(m+n-2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
RELATION WITH OTHER ROW POLYNOMIALS
The following three identities hold for n >= 1:
P_(n+1)(t) = (1+t^2)*R(n-1,t) where R(n,t) is the n-th row polynomial of A185896.
P_(n+1)(t) = (-2*i)^n*(t-i)*R(n,-1/2+1/2*i*t), where i = sqrt(-1) and R(n,x) is an ordered Bell polynomial, that is, the n-th row polynomial of A019538.
P_(n+1)(t) = (t-i)*(t+i)^n*A(n,(t-i)/(t+i)), where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials - see A008292. (End)
T(n,k) = cos((n+k)*Pi/2) * Sum_{p=0..n-1} A008292(n-1,p+1) Sum_{j=0..k}(-1)^(p+j+1) * binomial(p+1,k-j) *binomial(n-p-1,j) for n>1. - Ammar Khatab, Aug 15 2024

Extensions

Name clarified by Peter Luschny, May 25 2015

A258880 E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx.

Original entry on oeis.org

1, 6, 540, 184680, 157600080, 270419925600, 816984611467200, 3971317527112003200, 29097143353353192480000, 305823675529741700675520000, 4435486895868663971869188480000, 86036822683997062842122964537600000, 2175352015640142857526698650779456000000
Offset: 0

Views

Author

Paul D. Hanna, Jun 13 2015

Keywords

Comments

Note: Sum_{n>=0} (-1)^n*x^(3*n+1)/(3*n+1) = log( (1+x)/(1-x^3)^(1/3) )/2 + Pi*sqrt(3)/18 - atan( (1-2*x)*sqrt(3)/3 )*sqrt(3)/3.

Examples

			E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +...
where Series_Reversion(A(x)) =  x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 13;
    A[_] = 0;
    Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}];
    DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    {a(n) = local(A=x); A = serreverse( sum(m=0,n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A,3*n+1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */
    {a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A,3*n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f.: Series_Reversion( Integral 1/(1+x^3) dx ).
E.g.f.: Series_Reversion( Sum_{n>=0} (-1)^n * x^(3*n+1)/(3*n+1) ).
a(n) ~ 3^(15*n/2 + 17/4) * n^(3*n+1) / (exp(3*n) * (2*Pi)^(3*n+3/2)). - Vaclav Kotesovec, Jun 15 2015

A258901 E.g.f. satisfies: A(x) = Integral 1 + A(x)^4 dx.

Original entry on oeis.org

1, 24, 32256, 285272064, 8967114326016, 735868743566229504, 130778914961055994085376, 44390350317502907443360825344, 26290393222157669992962395876622336, 25377887922329300948014930852183837507584, 37855568618678541873143615775486954119570128896
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2015

Keywords

Examples

			E.g.f.: A(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! + 735868743566229504*x^21/21! +...
where Series_Reversion(A(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 +...
Also, A(x) = S(x)/C(x) where
S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! - 8310698364852576*x^21/21! +...+ A258900(n)*x^(4*n+1)/(4*n+1)! +...
C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! - 8310698364852576*x^20/20! +...+ A258900(n)*x^(4*n)/(4*n)! +...
such that C(x)^4 + S(x)^4 = 1.
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Table[CoefficientList[InverseSeries[Series[Integrate[1/(1+x^4),x],{x,0,4*nmax+1}],x],x][[4*n-2]] * (4*n-3)!, {n,1,nmax+1}] (* Vaclav Kotesovec, Jun 18 2015 *)
  • PARI
    /* E.g.f. Series_Reversion( Integral 1/(1+x^4) dx ): */
    {a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^4 + O(x^(4*n+2))) ) ); (4*n+1)!*polcoeff(A,4*n+1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f. A(x) = Integral 1 + A(x)^4 dx.: */
    {a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^4 + O(x^(4*n+2)) )); (4*n+1)!*polcoeff(A,4*n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = Series_Reversion( Integral 1/(1+x^4) dx ).
(2) A(x) = sqrt( tan( 2 * Integral A(x) dx ) ).
Let C(x) = S'(x) such that S(x) = Series_Reversion( Integral 1/(1-x^4)^(1/4) dx ) is the e.g.f. of A258900, then e.g.f. A(x) of this sequence satisfies:
(3) A(x) = S(x)/C(x),
(4) A(x) = Integral 1/C(x)^4 dx,
(5) A(x)^2 = S(x)^2/C(x)^2 = tan( 2 * Integral S(x)/C(x) dx ).
a(n) ~ 2^(6*n + 14/3) * (4*n)! * n^(1/3) / (3^(1/3) * Gamma(1/3) * Pi^(4*n + 4/3)). - Vaclav Kotesovec, Jun 18 2015

A258969 E.g.f.: A'(x) = 1 + A(x)^3, with A(0)=1.

Original entry on oeis.org

1, 2, 6, 42, 390, 4698, 69174, 1203498, 24163110, 549811962, 13982486166, 393026414922, 12099527531910, 404881353252378, 14632253175107574, 567974815524008298, 23567351945550373350, 1040985881615266375482, 48767788927611416600406, 2415210691383917131432842
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 15 2015

Keywords

Comments

Conjecture: A227250(n+1) = a(n).

Examples

			A(x) = 1 + 2*x + 6*x^2/2! + 42*x^3/3! + 390*x^4/4! + 4698*x^5/5! + ...
A'(x) = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
1 + A(x)^3 = 2 + 6*x + 21*x^2 + 65*x^3 + 783*x^4/4 + 11529*x^5/20 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^3-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
  • PARI
    {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/((2+x)*(1+x+x^2) +x*O(x^n)) )); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Jun 16 2015

Formula

a(n) ~ (3/(Pi/sqrt(3)-log(2)))^(n+1/2) * n^n / exp(n).
E.g.f.: 1 + Series_Reversion( Integral 1/((2+x)*(1+x+x^2)) dx ). - Paul D. Hanna, Jun 16 2015

A185356 Triangle read by rows: number of type B alternating permutations according to their last value.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 2, 4, 4, 3, 0, 3, 2, 0, 0, 4, 8, 11, 0, 11, 14, 16, 16, 80, 80, 76, 68, 57, 0, 57, 46, 32, 16, 0, 0, 80, 160, 236, 304, 361, 0, 361, 418, 464, 496, 512, 512, 3904, 3904, 3824, 3664, 3428, 3124, 2763, 0, 2763, 2402, 1984, 1520, 1024, 512, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 22 2011

Keywords

Comments

"The table counting type B alternating permutations by their last value is obtained by the following algorithm: first separate the picture by the column p = 0 and then compute two triangles. Put 1 at the top of each triangle and compute the rest as follows: fill the second row of the left (resp. right) triangle as the sum of the elements of the first row (resp. strictly) to their left. Then fill the third row of the right (resp. left) triangle as the sum of the elements of the previous row (resp. strictly) to their right. Compute all rows successively by reading from left to right and right to left alternately." [Joshua-Verges et al.]

Examples

			Triangle begins:
                       0
                     1 0 1
                 0   1 0 1   2
             4   4   3 0 3   2   0
         0   4   8  11 0 11  14  16  16
    80  80  76  68  57 0 57  46  32  16  0
  0 80 160 236 304 361 0 361 418 464 496 512 512
		

Crossrefs

See A202690 for another version.
See A010094 and A008281 for type A permutations.
Cf. A000831 (row sums, for n>0).
Cf. A001586 for the middle coefficients.

Programs

  • PARI
    T(n,k) = {if ((k==0), return(0)); if (n==1, if (abs(k)==1, return(1))); if (n%2, if (k<0, sum(j=k+1, n-1, T(n-1,j)), sum(j=k, n-1, T(n-1,j))), if (k<0, sum(j=-n+1, k, T(n-1,j)), sum(j=-n+1, k-1, T(n-1,j))));}
    tabf(nn) = {for (n=0, nn, for (k=-n, n, print1(T(n, k), ", ");); print;);} \\ Michel Marcus, Jun 03 2020

Extensions

More terms from Michel Marcus, Jun 03 2020

A258994 E.g.f.: A'(x) = 1 + A(x)^6, with A(0)=1.

Original entry on oeis.org

1, 2, 12, 192, 4272, 124992, 4531392, 195869952, 9832326912, 562125837312, 36056880110592, 2564230500421632, 200237330428342272, 17032391106795159552, 1567547894591436275712, 155196096043697480466432, 16447362605632117421309952, 1857733260790463501532659712
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2015

Keywords

Comments

In general, for k>1, if e.g.f. satisfies A'(x) = 1 + A(x)^k, with A(0)=1, then a(n) ~ n! * d^(n + 1/(k-1)) / ((k-1)^(1/(k-1)) * Gamma(1/(k-1)) * n^(1-1/(k-1))), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(k*j-1).

Examples

			A(x) = 1 + 2*x + 12*x^2/2! + 192*x^3/3! + 4272*x^4/4! + 124992*x^5/5! + ...
A'(x) = 2 + 12*x + 96*x^2 + 712*x^3 + 5208*x^4 + 188808*x^5/5 + ...
1 + A(x)^6 = 2 + 12*x + 96*x^2 + 712*x^3 + 5208*x^4 + 188808*x^5/5 + ...
		

Crossrefs

Cf. A000831 (k=2), A258969 (k=3), A258970 (k=4), A258971 (k=5), A258927.

Programs

  • Mathematica
    nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k,{k,0,nmax+1}]; Table[Subscript[a,k]*k!,{k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^6-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
  • PARI
    {a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^6 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015

Formula

a(n) ~ n! * d^(n+1/5) / (5^(1/5) * Gamma(1/5) * n^(4/5)), where d = 1 / Sum_{j>=1} (-1)^(j+1)/(6*j-1) = 6/(Pi - sqrt(3)*log(2+sqrt(3))) = 6.97224737278326506475991855023425659249063565...
E.g.f.: 1 + Series_Reversion( Integral 1/(1 + (1+x)^6) dx ). - Paul D. Hanna, Jun 16 2015

A373432 Triangle read by rows. Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the Pascal polynomials and EZ the zig-zag Eulerian polynomials A205497.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 19, 26, 19, 7, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1, 1, 33, 312, 1453, 4023, 7218, 8736, 7218, 4023, 1453, 312, 33, 1, 1, 54, 730, 4639, 17316, 42142, 70593, 83610, 70593, 42142, 17316, 4639, 730, 54, 1
Offset: 0

Views

Author

Peter Luschny, Jun 05 2024

Keywords

Comments

There are various conventions for indexing Eulerian numbers. The one used here is described by the condition that for all polynomials p(n, 0) = 1. This applies equally to the classical Eulerian polynomials given by the coefficients A173018, as well as to the Eulerian zig-zag polynomials with coefficients in A205497 and to the polynomials here. See the illustration (link section).

Examples

			Triangle starts:
  [0] [1]
  [1] [1,  1]
  [2] [1,  2,   1]
  [3] [1,  4,   6,   4,   1]
  [4] [1,  7,  19,  26,  19,    7,   1]
  [5] [1, 12,  52, 116, 150,  116,  52,  12,   1]
  [6] [1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1]
		

Crossrefs

Cf. A000831 (row sums), A007318 (Pascal), A205497 (zig-zag Eulerian).

Programs

  • Maple
    EZP := proc(P, len) local R, EZ, EP, EZP, CL, n;
    R := proc(n) option remember; local F; if n = 0 then 1/(1-q*x) else F := R(n-1);
    simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1-x)^(n+1))/x^2)):
    EP := (n, x) -> local k; simplify(add(P(n, k)*x^k, k = 0..n)):
    EZP := (n, x) -> expand(EZ(n, x) * EP(n, x)):
    CL := p -> PolynomialTools:-CoefficientList(p, x);
    seq(CL(EZP(n, x)), n = 0..len); ListTools:-Flatten([%]) end:
    EZP(binomial, 8);
Showing 1-10 of 21 results. Next