A000957 Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.
0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0
Examples
G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
References
- Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
- Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
- Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1670 (first 201 terms from T. D. Noe)
- Francesca Aicardi, Fuss-Catalan Triangles, arXiv:2310.07317 [math.CO], 2023.
- Martin Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
- Elena Barcucci, Elisa Pergola, Renzo Pinzani and Simone Rinaldi, ECO method and hill-free generalized Motzkin paths, Séminaire Lotharingien de Combinatoire, 46 (2001).
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18 (2011), #P178.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 4.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 6, 10.
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
- Rachael Boyd and Richard Hepworth, Combinatorics of injective words for Temperley-Lieb algebras, arXiv:2006.04261 [math.AT], 2020.
- Naiomi Tuere Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
- Naiomi T. Cameron and Jillian E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19 (2016), #16.6.1.
- Peter J. Cameron, Some sequences of integers, Discrete Math., Vol. 75, No. 1-3 (1989), pp. 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., Vol. 43 (1989), pp. 89-102.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- Ari Cruz, Pamela E. Harris, Kimberly J. Harry, Jan Kretschmann, Matt McClinton, Alex Moon, John O. Museus, and Eric Redmon, On some discrete statistics of parking functions, arXiv:2312.16786 [math.CO], 2023. See p. 13.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers, Vol. 20 (2020), Article #A8.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Emeric Deutsch and Louis W. Shapiro, A survey of the Fine numbers, Discrete Math., Vol. 241 (2001), pp. 241-265.
- Filippo Disanto, Andrea Frosini and Simone Rinaldi and Renzo Pinzani, The Combinatorics of Convex Permutominoes, Southeast Asian Bulletin of Mathematics, Vol. 32 (2008), pp. 883-912.
- R. R. X. Du, J. He, and X. Yun, Counting vertices in plane and k-ary trees with given outdegree, arXiv preprint arXiv:1501.07468 [math.CO], 2015.
- Shalosh B. Ekhad, Mingjia Yang and Doron Zeilberger, Automated proofs of many conjectured recurrences in the OEIS made by R. J. Mathar, arXiv:1707.04654 [math.HO], 2017.
- Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; http://dx.doi.org/10.4134/CKMS.2013.28.4.827.
- Terrence Fine, Extrapolation when very little is known about the source, Information and Control, Vol. 16 (1970), pp. 331-359.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 27.
- Taras Goy and Mark Shattuck, Hessenberg-Toeplitz Matrix Determinants with Schröder and Fine Number Entries, arXiv:2303.10223 [math.CO], 2023.
- Taras Goy and Mark Shattuck, Hessenberg-Toeplitz Matrix Determinants with Schröder and Fine Number Entries, Carpathian Math. Publ. 15 (2023), No. 2, 420-436.
- Candice Jean-Louis and Asamoah Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and its Applications, Vol. 438, No. 5 (2013), pp. 2018-2035. - _N. J. A. Sloane_, Jan 03 2013
- Sergey Kitaev, Anna de Mier, Marc Noy, On the number of self-dual rooted maps, European J. Combin., Vol. 35 (2014), pp. 377-387. MR3090510. See page 827.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, Vol. 4 (2001), Article 01.1.5.
- Toufik Mansour and Mark Shattuck, Chebyshev Polynomials and Statistics on a New Collection of Words in the Catalan Family, arXiv:1407.3516 [math.CO], 2014.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), Article 00.2.1.
- Paul Peart and Wen-Jin Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, Vol. 4 (2001), Article 01.1.3.
- Aaron Robertson, Dan Saracino and Doron Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- D. G. Rogers, Similarity relations on finite ordered sets, J. Combin. Theory, Series A, Vol. 23, No. 1 (1977), pp. 88-98. Erratum, loc. cit., Vol. 25 (1978), pp. 95-96.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS, Vol. 12 (2009), Article 09.3.2.
- Volker Strehl, A note on similarity relations, Discr. Math., Vol. 19, No. 1 (1977), pp. 99-102.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq., Vol. 17 (2014), Article 14.5.2
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, M.Sc. Thesis, Reykjavik Univ., May 2016.
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Haskell
a000957 n = a000957_list !! n a000957_list = 0 : 1 : (map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list) -- Reinhard Zumkeller, Nov 12 2011
-
Magma
[0,1] cat [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
-
Maple
t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n); A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013 # third Maple program: a:= proc(n) option remember; `if`(n<3, n*(2-n), ((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n)) end: seq(a(n), n=0..32); # Alois P. Heinz, Apr 23 2020
-
Mathematica
Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *) a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *) Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
-
Maxima
C(n):=binomial(2*n,n)/(n+1); a(n):=if n<=0 then 0 else if n=1 then 1 else sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1); /* Vladimir Kruchinin, Apr 23 2020 */
-
PARI
{a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
-
PARI
{a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
-
Python
from itertools import count, islice def A000957_gen(): # generator of terms yield from (0,1,0) a, c = 0, 1 for n in count(1): yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1) A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
-
Sage
def Fine(): f, c, n = 1, 1, 1 yield 0 while True: yield f n += 1 c = c * (4*n - 6) // n f = (c - f) // 2 a = Fine() print([next(a) for in range(29)]) # _Peter Luschny, Nov 30 2016
Formula
Catalan(n) = 2*a(n+1) + a(n), n >= 1. [Corrected by Pontus von Brömssen, Jul 23 2022]
a(n) = (A064306(n-1) + (-1)^(n-1))/2^n, n >= 1.
G.f.: (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) (compare g.f. for Catalan numbers, A000108). - Emeric Deutsch
a(n) ~ 4^n/(9*n*sqrt(n*Pi)). (Corrected by Peter Luschny, Oct 26 2015.)
a(n) = (2/(n-1))*Sum_{j=0..n-3}(-2)^j*(j+1)*binomial(2n-1, n-3-j), n>=2. - Emeric Deutsch, Dec 26 2003
a(n) = 3*Sum_{j=0..floor((n-1)/2)} binomial(2n-2j-2, n-1) - binomial(2n, n) for n>0. - Emeric Deutsch, Jan 28 2004
Reversion of g.f. (x-2x^2)/(1-x)^2. - Ralf Stephan, Mar 22 2004
a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, C(1/2, k)8^k})+0^n; a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, (-1)^(k-1)*2^k*(2k)!/((k!)^2*(2k-1))})+0^n. - Paul Barry, Jun 10 2005
Hankel determinant transform is 1-n. - Michael Somos, Sep 17 2006
a(n+1) = A126093(n,0). - Philippe Deléham, Mar 05 2007
a(n+1) has g.f. 1/(1-0*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(..... (continued fraction). - Paul Barry, Dec 02 2008
From Paul Barry, Jan 17 2009: (Start)
G.f.: x*c(x)/(1+x*c(x)), c(x) the g.f. of A000108;
a(n+1) = Sum_{k=0..n} (-1)^k*C(2n-k,n-k)*(k+1)/(n+1). (End)
a(n) = 3*(-1/2)^(n+1) + Gamma(n+1/2)*4^n*hypergeom([1, n+1/2],[n+2],-8) /(sqrt(Pi)*(n+1)!) (for n>0). - Mark van Hoeij, Nov 11 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n>=1, a(n+1) = (-1)^n*charpoly(A,1). - Milan Janjic, Jul 08 2010
a(n) = the upper left term in M^n, n>0; where M = the infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n+1) = Sum_{k=0..n} A039598(n,k)*(-2)^k. - Philippe Deléham, Nov 04 2011
D-finite with recurrence: 2*n*a(n) +(12-7*n)*a(n-1) +2*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) = sum(sum(2^(s-2n-2k)*(n/n+2k)binomial(n+2k, k)*binomial(s-n-1, s-2n-2k), (k=0, ..., floor((s-2n)/2)), (n=1, ..., s) with s>=2. - José Luis Ramírez Ramírez, Mar 22 2012
0 = a(n)*(16*a(n+1) + 22*a(n+2) - 20*a(n+3)) + a(n+1)*(34*a(n+1) + 53*a(n+2) - 38*a(n+3)) + a(n+2)*(10*a(n+2) + 4*a(n+3)) for all n in Z if we extend by a(0)=-1, a(-n) = -3/4 * (-2)^n if n>0. - Michael Somos, Jan 31 2014 [Corrected by Pontus von Brömssen, Aug 04 2022]
G.f. A(x) satisfies x*A'(x)/A(x) = x + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for A072547. - Peter Bala, Oct 01 2015
a(n) = 2^n*(n-2)*(2*n-1)!!*(3*(n-1)*hypergeom([1,3-n], [3+n], 2)-n-2)/(n+2)! + 0^n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = binomial(2*n,n)*(hypergeom([1,(1-n)/2,1-n/2],[1-n,3/2-n],1)*3/(4-2/n)-1) for n>=2. - Peter Luschny, Oct 26 2015
O.g.f. A(x) satisfies 1 + A(x) = (1 + 3*Sum_{n >= 1} Catalan(n)*x^n)/(1 + 2*Sum_{n >= 1} Catalan(n)*x^n) = (1 + 2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = Sum_{i=2..n-1} C(n-i-1)*(a(i)+a(i-1)), a(0)=0, a(1)=1, where C(n) = A000108(n). - Vladimir Kruchinin, Apr 23 2020
Comments