cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001815 a(n) = binomial(n,2) * 2^(n-1).

Original entry on oeis.org

0, 0, 2, 12, 48, 160, 480, 1344, 3584, 9216, 23040, 56320, 135168, 319488, 745472, 1720320, 3932160, 8912896, 20054016, 44826624, 99614720, 220200960, 484442112, 1061158912, 2315255808, 5033164800, 10905190400, 23555211264, 50734301184, 108984795136
Offset: 0

Views

Author

Keywords

Comments

Number of permutations of length n+3 containing 132 and 123 exactly once. Likewise for the pairs (123,213), (231,321), (312,321).
a(n) is the number of ways to assign n distinct contestants to two (not necessarily equal) distinct teams and then choose a captain for each team. - Geoffrey Critzer, Apr 07 2009
Consider all binary words of length n, and assign a weight to each set bit - the leftmost gets a weight of n-1, the rightmost a weight of 0. a(n) gives the sum of the weights of all n-bit words. For example, if n=3, we have 000, 001, 010, 011, 100, 101, 110, 111 with weights of 0, 0, 1, 1, 2, 2, 3, 3, giving a sum of 12.
a(n) is the number of North-East paths from (0,0) to (n+2,n+2) that have exactly one east step below y = x-1 and exactly one east step above y = x+1. This is related to the paired pattern P_1 and P_2. More details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
a(n) is the number of diagonals of length sqrt(2) in an n-dimensional hypercube (same as diagonals of its two-dimensional faces). - Stanislav Sykora, Oct 23 2016
a(n) is the number of ways to select a team from n players with at least two players, two of whom are the captain and the goalkeeper. - Wojciech Raszka, Apr 10 2019
a(n) is the sum of N_0*N_1 for all binary strings of length n, where N_0 and N_1 are the number of 0's and 1's in the string, respectively. For example, if n=3, we have 000, 001, 010, 011, 100, 101, 110, 111 with products 0, 2, 2, 2, 2, 2, 2, 0, giving a sum of 12. - Sigurd Kittilsen and Jens Otten, Sep 17 2020

Examples

			G.f. = 2*x^2 + 12*x^3 + 48*x^4 + 160*x^5 + 480*x^6 + 1344*x^7 + 3584*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n,2)*2^(n-1): n in [0..30]]; // Vincenzo Librandi, Mar 14 2014
  • Maple
    A001815 := proc(n)
        2^(n-2)*n*(n-1) ;
    end proc: # R. J. Mathar, Mar 12 2014
  • Mathematica
    Table[Binomial[n, 2]*2^(n-1), {n, 0, 28}] (* Arkadiusz Wesolowski, Dec 21 2011 *)
    CoefficientList[Series[2 x^2/(1 - 2 x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[{6,-12,8},{0,0,2},30] (* Harvey P. Dale, May 19 2018 *)
  • PARI
    a(n)=binomial(n,2)<<(n-1) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    my(x='x+O('x^100)); concat([0, 0], Vec(2*x^2/(1-2*x)^3)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [lucas_number1(n, 2, 0)*binomial(n,2) for n in range(0, 29)] # Zerinvary Lajos, Mar 10 2009
    

Formula

G.f.: 2*x^2/(1 - 2*x)^3. [Simon Plouffe in his 1992 dissertation]
a(n) = A090802(n, 2).
a(n) = Sum_{i=0..n} i*(n-i)*binomial(n, i). - Benoit Cloitre, Nov 11 2004
a(n) = Sum_{k=0..n} k*2^(k-1). - Zerinvary Lajos, Oct 09 2006
a(n) = Sum_{j=0..n} binomial(n-1,j)*n*j. - Zerinvary Lajos, Oct 19 2006
E.g.f.: x^2*exp(2*x). - Geoffrey Critzer, Apr 07 2009
a(n) = 2^(n-2)*n*(n-1). - Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 18 2009
a(n) = 2*a(n-1) + n*2^n.
For n > 0, a(n) = 2*A001788(n-1). - Stanislav Sykora, Oct 23 2016
a(n) = a(1-n) * 2^(2*n-1) for all n in Z. - Michael Somos, Oct 25 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} k * binomial(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*(1 - log(2)).
Sum_{n>=0} (-1)^n/a(n) = 6*log(3/2) - 2. (End)