cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A056772 Numbers k such that phi(k+4) = phi(k) + 4, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 12, 13, 18, 19, 24, 28, 36, 37, 40, 43, 66, 67, 79, 88, 97, 103, 109, 124, 127, 163, 184, 193, 223, 229, 232, 277, 307, 313, 328, 349, 379, 397, 424, 439, 457, 463, 487, 499, 508, 613, 643, 664, 673, 712, 739, 757, 769, 823, 853, 859, 877, 883, 904, 907
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

In contrast with A015913, composite solutions are not rare. Prime solutions are common.
From Kevin J. Gomez, Mar 02 2016: (Start)
Composite solutions have two known forms:
n such that n = 4 * (2^p - 1) where 2^p - 1 is a Mersenne prime. (A001348)
n such that n = 8q where q is a Sophie Germain prime. (A005394)
There are composite solutions (such as 36) that do not fit either of these forms. (End)

Examples

			For k = 1048: phi(1048) = 520, phi(1048+4) = 524.
		

Crossrefs

Cf. A000010, A015913 (sigma(k+4) = sigma(k) + 4).
Cf. A001838 (k=2), this sequence (k=4), A262084 (k=6), A262085 (k=8), A262086 (k=10).

Programs

A050475 Numbers k such that x = 2^k-2 satisfies phi(x)+2 = phi(x+2).

Original entry on oeis.org

3, 4, 6, 8, 14, 18, 20, 32, 62, 90, 108, 128, 522, 608, 1280, 2204, 2282, 3218, 4254, 4424, 9690, 9942, 11214, 19938, 21702, 23210, 44498, 86244, 110504, 132050, 216092, 756840, 859434, 1257788, 1398270, 2976222, 3021378, 6972594, 13466918, 20996012, 24036584, 25964952, 30402458, 32582658
Offset: 1

Views

Author

Jud McCranie, Dec 24 1999

Keywords

Comments

Other solutions of this equation are in A001838.
Also, numbers k such that 2^(k-1)-1 is prime. Proof: If x = 2^k-2, phi(x)+2 = phi(x+2) <==> phi(2^k-2)+2 = phi(2^k) <==> phi(2(2^(k-1)-1)) + 2 = 2^k(1-1/2) <==> phi(2)*phi(2^(k-1)-1)+2 = 2^(k-1) <==> phi(2^(k-1)-1) = 2^(k-1)-2 if y = 2^(k-1)-1. We have phi(y) = y-1 <==> y=2^(k-1)-1 is prime. Therefore a(n) = A000043(n)+1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004

Examples

			phi(2^18-2)+2 = 131072 = phi(2^18), so 18 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[EulerPhi[2^# - 2] + 2 == EulerPhi[2^# ] & /@ Range[1, 250], True]] (* Vit Planocka *)

Formula

a(n) = A000043(n) + 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004

Extensions

a(39)-a(44) from Ivan Panchenko, Apr 11 2018

A262084 Numbers m that satisfy the equation phi(m + 6) = phi(m) + 6 where phi(m) = A000010(m) is Euler's totient function.

Original entry on oeis.org

5, 7, 11, 13, 17, 21, 23, 31, 37, 40, 41, 47, 53, 56, 61, 67, 73, 83, 88, 97, 98, 101, 103, 107, 131, 136, 151, 152, 156, 157, 167, 173, 191, 193, 223, 227, 233, 237, 248, 251, 257, 263, 271, 277, 296, 307, 311, 328, 331, 347, 353, 367, 373, 376, 383, 433, 443
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

The majority of solutions can be predicted by known properties of the equality. There are several solutions that do not fit these parameters.
An odd natural number m is a solution if m and m + 6 are both prime (sexy primes) (A023201).
Among the solutions for even natural numbers are all m = 8*p with odd primes p such that 4*p+3 is a prime number. Proof: From A000010 we can learn that the formula phi(p*2) = floor(((2 + p - 1) mod p)/(p - 1)) + p - 1 is known. If we define p = 4*q+3 and m = 8*q and insert, we will obtain phi(8*q+6) = 4*q+2. Also it is known that phi(8*q) = 4*q-4 if q is any odd prime. - Thomas Scheuerle, Dec 20 2024

Examples

			5 is a term since phi(5+6) = 10 = 6 + 4 = phi(5) + 6.
		

Crossrefs

Cf. A001838 (k=2), A056772 (k=4), A262085 (k=8), A262086 (k=10).

Programs

  • Magma
    [n: n in [1..500] | EulerPhi(n+6) eq EulerPhi(n)+6]; // Vincenzo Librandi, Sep 11 2015
    
  • Mathematica
    Select[Range@500, EulerPhi@(# + 6)== EulerPhi[#] + 6 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 6) == eulerphi(n) + 6 \\ Anders Hellström, Sep 11 2015
  • Sage
    [n for n in [1..1000] if euler_phi(n+6)==euler_phi(n)+6] # Tom Edgar, Sep 10 2015
    

A262085 Numbers n such that phi(n + 8) = phi(n) + 8 where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

3, 5, 11, 23, 24, 29, 36, 42, 48, 50, 53, 56, 59, 71, 72, 80, 89, 101, 102, 125, 131, 132, 149, 173, 176, 191, 230, 233, 248, 263, 269, 359, 368, 389, 401, 431, 449, 464, 479, 491, 563, 569, 593, 599, 638, 653, 656, 683, 701, 719, 743, 761, 821, 848, 911, 929, 983
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

Sequence includes numbers n such that n and n + 8 are both prime (A023202).
Sequence also includes numbers n equal to 8*(a Mersenne prime) (cf A000668).
Sequence also includes n such that n/16 and n/8 + 1 are both odd primes.
Contains more composites than sequences A262084 and A262086. This is most likely due to the fact that 8 is a power of 2, as in A001838.

Examples

			3 since phi(11) = phi(3) + 8 (3 and 11 are both prime).
24 is a solution since phi(32) = phi(24) + 8 (24 is 8 * 3; 3 is a Mersenne prime).
		

Crossrefs

Cf. A000010.
Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262086 (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+8) eq EulerPhi(n)+8]; // Vincenzo Librandi, Sep 11 2015
    
  • Maple
    select(t -> numtheory:-phi(t+8) = numtheory:-phi(t)+8, [$1..1000]); # Robert Israel, Mar 04 2016
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 8)== EulerPhi[#] + 8 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 8) == eulerphi(n) + 8 \\ Anders Hellström, Sep 11 2015
    
  • Sage
    [n for n in (1..1000) if euler_phi(n+8) == euler_phi(n)+8] # Bruno Berselli, Mar 04 2016

A262086 Numbers k such that phi(k + 10) = phi(k) + 10, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 13, 19, 31, 36, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

The only composite term less than 10^11 is 36. - Giovanni Resta, Sep 14 2015

Examples

			3 is in the sequence since phi(13) = phi(3) + 10.
		

Crossrefs

Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262085 (k=8), this sequence (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+10) eq EulerPhi(n)+10]; // Vincenzo Librandi, Sep 11 2015
    
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 10) == EulerPhi[#] + 10 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 10) == eulerphi(n) + 10 \\ Anders Hellström, Sep 11 2015

A056774 Composite n such that phi(n+2) = phi(n)+2.

Original entry on oeis.org

6, 12, 14, 18, 20, 44, 62, 92, 116, 164, 212, 254, 332, 356, 452, 524, 692, 716, 764, 932, 956, 1004, 1124, 1172, 1436, 1676, 1724, 1772, 1964, 2036, 2372, 2564, 2612, 2636, 2732, 2876, 2972, 3044, 3236, 3644, 3812, 4052, 4076, 4124, 4196, 4412, 4892
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Below 100000 no common composite solutions with sigma(n+2)=sigma(n)+2, while prime solutions are common.
phi(x)+2=phi(x+2) is equivalent to cototient(x+2)=cototient(x), so also defines closest numbers with identical value of cototients (A051953), either primes or composites.

Examples

			n=254, phi(254+2) = phi(256) = 128 = phi(254)+2 = 126+2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],CompositeQ[#]&&EulerPhi[#]+2==EulerPhi[#+2]&] (* Harvey P. Dale, Jul 10 2017 *)
  • PARI
    isok(n) = !isprime(n) && (eulerphi(n+2) == eulerphi(n)+2); \\ Michel Marcus, Aug 30 2019

A056853 Numbers n satisfying phi(n+1) - phi(n-1) = 2.

Original entry on oeis.org

4, 6, 7, 12, 13, 15, 18, 19, 21, 30, 42, 45, 60, 63, 72, 93, 102, 108, 117, 138, 150, 165, 180, 192, 198, 213, 228, 240, 255, 270, 282, 312, 333, 348, 357, 420, 432, 453, 462, 522, 525, 570, 600, 618, 642, 660, 693, 717, 765, 810, 822, 828, 858, 882, 933, 957
Offset: 1

Views

Author

Joseph L. Pe, Feb 12 2002

Keywords

Examples

			phi(13+1)-phi(13-1) = 2, so 13 is a term of the sequence.
		

Crossrefs

Cf. A000010. Essentially the same as A001838.

Programs

A056773 Composite n such that phi(n+4) = phi(n)+4.

Original entry on oeis.org

12, 18, 24, 28, 36, 40, 66, 88, 124, 184, 232, 328, 424, 508, 664, 712, 904, 1048, 1384, 1432, 1528, 1864, 1912, 2008, 2248, 2344, 2586, 2872, 3352, 3448, 3544, 3928, 4072, 4744, 5128, 5224, 5272, 5464, 5752, 5944, 6088, 6472, 7288, 7624, 8104, 8152, 8248
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Are all terms even? - Robert Israel, Apr 28 2020

Examples

			24 is in the sequence because 24 is composite and phi(24)+4 = 12 = phi(24+4).
		

Crossrefs

A001838, A015913, A055458. Composites in A056772. Primes in A056772 are A023200.

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-phi(n+4)=numtheory:-phi(n)+4:
    select(filter, [$1..10000]); # Robert Israel, Apr 28 2020
  • Mathematica
    Select[Range[9000],CompositeQ[#]&&EulerPhi[#]+4==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 12 2015 *)
  • PARI
    is(n)=!isprime(n) && eulerphi(n+4)==eulerphi(n)+4 \\ Charles R Greathouse IV, Apr 28 2020

Extensions

Edited by Robert Israel, Apr 28 2020

A056775 Numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

5, 7, 11, 17, 19, 29, 31, 41, 45, 47, 59, 61, 65, 67, 71, 80, 89, 97, 99, 101, 112, 117, 127, 135, 137, 139, 151, 167, 171, 176, 179, 181, 196, 199, 207, 209, 211, 227, 229, 239, 251, 257, 269, 271, 272, 279, 281, 294, 304, 310, 312, 337, 347, 367, 369, 389
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

Prime solutions are in A046133, common with primes in A015917.

Examples

			65 is a term since phi(65) = 48, phi(65+12) = phi(77) = 60 = 48 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],EulerPhi[#]+12==EulerPhi[#+12]&] (* Harvey P. Dale, Jan 21 2013 *)

A056776 Composite numbers k such that phi(k+12) = phi(k) + 12.

Original entry on oeis.org

45, 65, 80, 99, 112, 117, 135, 171, 176, 196, 207, 209, 272, 279, 294, 304, 310, 312, 369, 406, 429, 477, 496, 531, 592, 656, 657, 711, 752, 801, 909, 927, 944, 981, 1014, 1072, 1078, 1179, 1251, 1359, 1424, 1557, 1611, 1629, 1712, 1719, 1744, 1786, 1791
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

There are common cases with A054902.

Examples

			656 is a term since it is composite and phi(656) = 320, phi(656+12) = phi(668) = 332 = 320 + 12.
657 is a term since it is composite and phi(657) = 432, phi(657+12) = phi(669) = 444 = 432 + 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1800], CompositeQ[#] && EulerPhi[# + 12] == EulerPhi[#] + 12 &] (* Amiram Eldar, Mar 01 2020 *)
Showing 1-10 of 12 results. Next